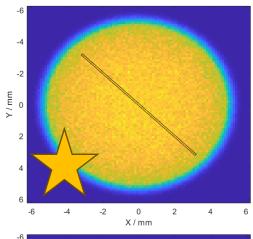
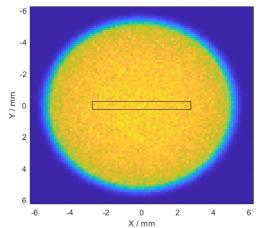
CI Update

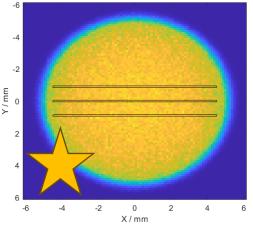
O. Stringer, S. Sethi & H. Zhang

LHC Designs – Ne gas throughout

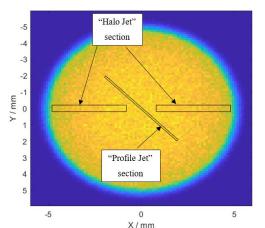



Skimmer Options

See .docx file for summary document of concepts


1.1 – Thin Curtain

Reduce thickness smearing for 2D profile


1.2 – Halo Single

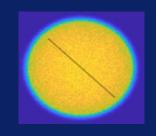
Maximise losses for halo detection

1.3 – Halo Multi

Same as 1.2, but reduced chance of misalignment

1.4 - Profile & Halo

Combination of 1.1 and 1.2 (shared positives and negatives)



Design 1.1 – Thin Curtain

Design	Density / m ⁻³	Length / mm	Width / mm	BG Pressure / mbar
V3	1.15×10^{17}	21.0	0.68	4.7×10^{-8}
Thin Curtain	1.01×10^{17}	17.2	0.22	4.8×10^{-9}
Delta	-12.9%	-17.9%	-67.1%	-89.7%

Density value seems high – not enough time to investigate, but delta's should be correct

Relative Signal = $\frac{\eta_{Design}d_{Design}}{\eta_{V3}d_{V3}} = 0.28$

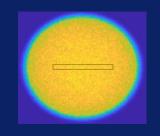
(Includes $\sqrt{2}$ factor for thickness where appropriate)

Expected time to usable profile increase by ~3.5x (2 min becomes 7 min)

Design 1.1 – Thin Curtain (misalignment)

Additional 4 th Skimmer size / mm	Pressure (IP) / mbar	V3 Delta / %	Pressure (Dump) / mbar	V3 Delta / %
+0.0 (Baseline)	5.22×10^{-9}	-88.75%	6.86×10^{-8}	-67.70%
+0.5	5.73×10^{-9}	-87.67%	6.81×10^{-8}	-67.94%
+1.0	6.23×10^{-9}	-86.58%	6.76×10^{-8}	-68.18%
+2.0	7.24×10^{-9}	-84.41%	6.66×10^{-8}	-68.65%
+3.0	8.25×10^{-9}	-82.24%	6.56×10^{-8}	-69.13%
+4.0	9.26×10^{-9}	-80.07%	6.46×10^{-8}	-69.60%

Added to the smallest dimension of the 4th skimmer, in this case – the width.



Design 1.2 – Halo Single Slit

Design	Density / m ⁻³	Length / mm	Width / mm	BG Pressure / mbar
V3	1.15×10^{17}	21.0	0.68	4.7×10^{-8}
Halo Single Slit	1.01×10^{17}	1.53	18.0	4.4×10^{-8}
Delta	-12.3%	-92.7%	+2550%	-5.0%

Density value seems high – not enough time to investigate, but delta's should be correct

Relative Signal = $\frac{\eta_{Design}d_{Design}}{\eta_{V3}d_{V3}} = 16.4$

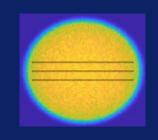
(Includes $\sqrt{2}$ factor for thickness where appropriate)

Maximise losses for halo detection, 1D profile achievable, needs perfect alignment.

Design 1.2 – Halo Single (misalignment)

Additional 4 th Skimmer size / mm	Pressure (IP) / mbar	V3 Delta / %	Pressure (Dump) / mbar	V3 Delta / %
+0.0 (Baseline)	5.55×10^{-8}	+19.4%	4.68×10^{-7}	+120.0%
+0.5	5.91×10^{-8}	+27.2%	4.64×10^{-7}	+118.3%
+1.0	6.27×10^{-8}	+35.0%	4.60×10^{-7}	+116.6%
+2.0	7.00×10^{-8}	+50.7%	4.53×10^{-7}	+113.2%
+3.0	7.73×10^{-8}	+66.3%	4.46×10^{-7}	+109.8%
+4.0	8.45×10^{-8}	+82.0%	4.46×10^{-7}	+106.3%

Added to the smallest dimension of the 4th skimmer, in this case – the length.



Design 1.3 – Halo Multi Slit

Design	Density / m ⁻³	Length / mm	Width / mm	BG Pressure / mbar
V3	1.15×10^{17}	21.0	0.68	4.7×10^{-8}
Halo Multi Slit	1.03×10^{17}	3×0.20	20.5	1.71×10^{-8}
Delta	-10.8%	-99.0%	+2900%	-63.4%

Density value seems high – not enough time to investigate, but delta's should be correct

 $Relative Signal = \frac{\eta_{Design} d_{Design}}{\eta_{V3} d_{V3}} = 19.1$

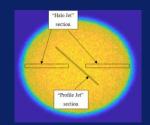
(Includes $\sqrt{2}$ factor for thickness where appropriate)

Maximise losses for halo detection, Allows for +-3.5mm misalignment with beam.

Design 1.3 – Halo Multi (misalignment)

Additional 4 th Skimmer size / mm	Pressure (IP) / mbar	V3 Delta / %	Pressure (Dump) / mbar	V3 Delta / %
+0.0 (Baseline)	2.02×10^{-8}	-56.5%	1.87×10^{-7}	-12.1%
+0.5	2.54×10^{-8}	-45.3%	1.82×10^{-7}	-14.6%
+1.0	3.07×10^{-8}	-34.0%	1.76×10^{-7}	-17.0%
+2.0	4.11×10^{-8}	-11.5%	1.66×10^{-7}	-22.0%
+3.0	5.16×10^{-8}	+11.0%	1.55×10^{-7}	-26.9%
+4.0	6.21×10^{-8}	+33.6%	1.45×10^{-7}	-31.8%

Added to the smallest dimension of the 4th skimmer, in this case – the length of each 3 slits.



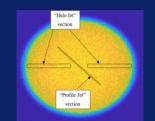
Design 1.4 – Profile & Halo

Unable to use MOGA before deadline (many assumptions breakdown)

Design	Density / m ⁻³	Length / mm	Width / mm	BG Pressure / mbar
V3	1.15×10^{17}	21.0	0.68	4.7×10^{-8}
Profile Jet	1.18×10^{17}	12.6	0.22	2.7×10^{-8}
Delta	+1.8%	-40.1%	-67.3%	-42.7%
Halo Jet	1.20×10^{17}	0.91	2×9.0	2.7×10^{-8}
Delta	+4.0%	-95.7%	+1230%	-42.7%

$$Relative\ Signal = \frac{\eta_{Profile}d_{Profile}}{\eta_{V3}d_{V3}} = 0.33 \quad Relative\ Signal = \frac{\eta_{Halo}d_{Halo}}{\eta_{V3}d_{V3}} = 19.5$$

Profile jet to image with reduced thickness effects (x3 as long for profile) & maximise losses for halo detection – requires perfect alignment & minimum losses dictated by profile jet



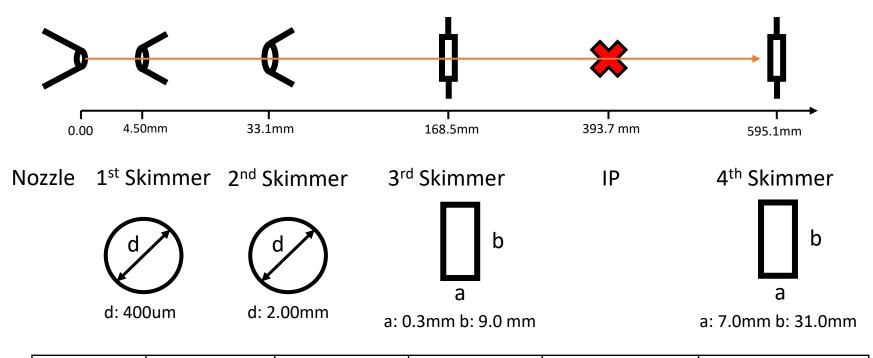
Design 1.4 – Profile & Halo (misalignment)

Unable to use MOGA before deadline (many assumptions breakdown)

Additional 4 th Skimmer size / mm	Pressure (IP) / mbar	V3 Delta / %	Pressure (Dump) / mbar	V3 Delta / %
+0.0 (Baseline)	2.68×10^{-8}	-42.3%	3.33×10^{-7}	+56.6%
+0.5	3.08×10^{-8}	-33.7%	3.29×10^{-7}	+54.7%
+1.0	3.48×10^{-8}	-25.1%	3.25×10^{-7}	+52.9%
+2.0	4.26×10^{-8}	-8.2%	3.17×10^{-7}	+49.2%
+3.0	5.03×10^{-8}	+8.2%	3.09×10^{-7}	+45.6%
+4.0	5.35×10^{-8}	+15.1%	3.06×10^{-7}	+44.1%

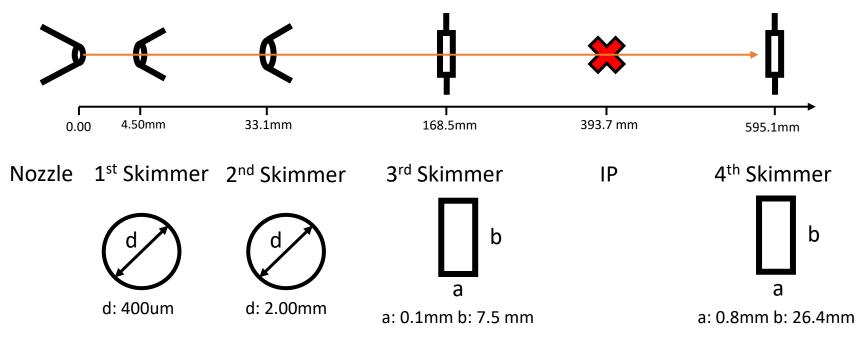
Added to the smallest dimension of the 4th skimmer, in this case – the width of profile jet & the length of both halo jets

Detailed Designs



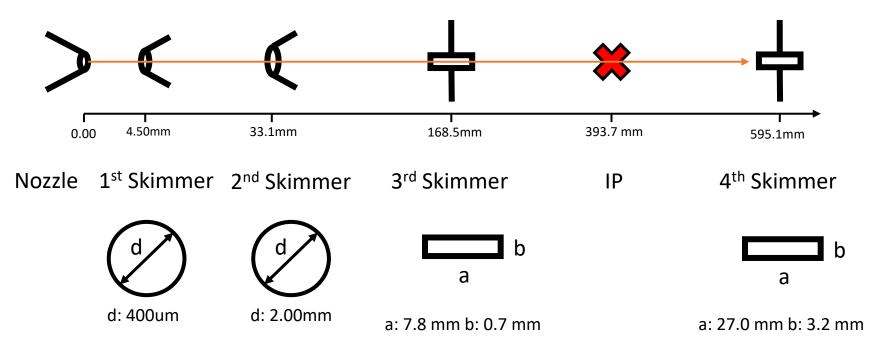
Results – V3 (Benchmark) - Ne gas

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	Variation in centre / %	BG Pressure / mbar
Version 3 (LHC)	1.15×10^{17}	21.0	0.68	5.19	4.67×10^{-8}



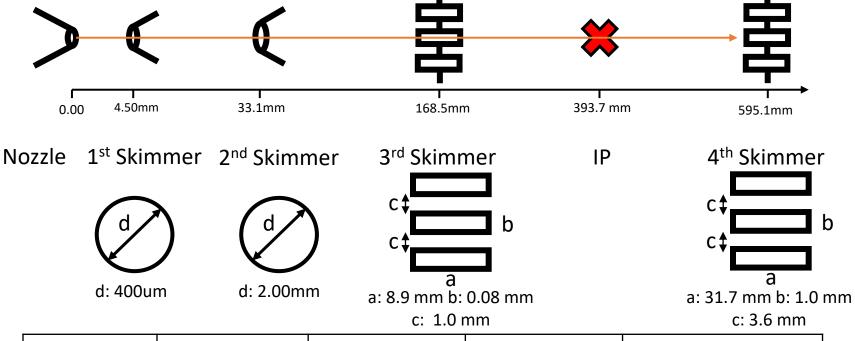
Results – Thin Curtain - Ne gas

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	BG Pressure / mbar
Thin Curtain	1.01×10^{17}	17.2	0.22	4.8×10^{-9}



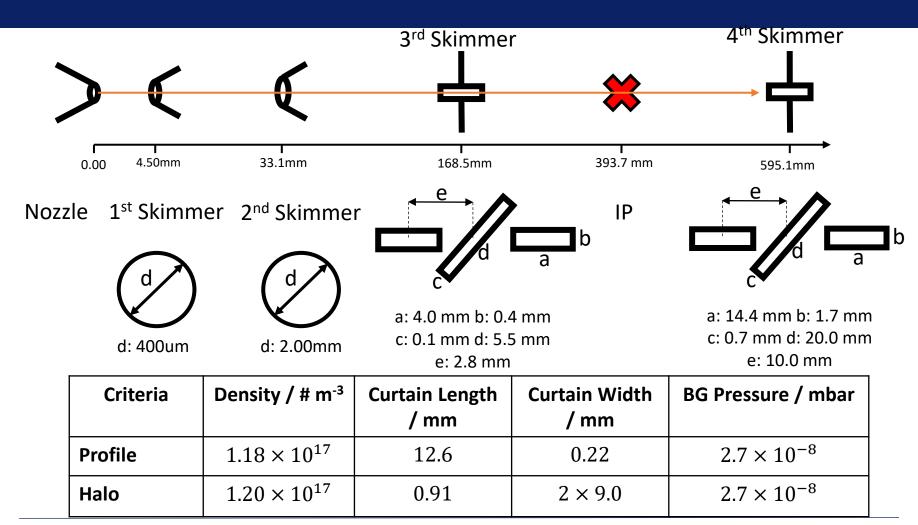
Results – Halo Single Slit - Ne gas

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	BG Pressure / mbar
Halo Single Slit	1.01×10^{17}	1.53	18.0	4.4×10^{-8}



Results – Halo Multi Slit - Ne gas

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	BG Pressure / mbar
Halo Multi Slit	1.03×10^{17}	3 × 0.20	20.5	1.71×10^{-8}



Results – Halo Single Slit - Ne gas

