Overview of technical workflow for FCC-hh studies

30.09.2025 FCC-hh general meeting

Birgit Stapf, Angela Taliercio, Sarah Williams

Introduction

- As introduced during the <u>kick-off workshop</u>, there are many opportunities to contribute to FCC-hh studies/updates in the ESPP 2025 process
- Do you have an idea, but find yourself wondering how you would go about putting it into practice?
 - This talk aims to give you an overview

Introduction

- As introduced during the <u>kick-off workshop</u>, there are many opportunities to contribute to FCC-hh studies/updates in the ESPP 2025 process
- Do you have an idea, but find yourself wondering how you would go about putting it into practice?
 - This talk aims to give you an overview
- Note: All current and planned physics studies for FCC-hh rely on fast simulation with Delphes, there is also ongoing work and lots of opportunity for stand-alone full simulation studies, focussing e.g. on pile-up, tracking with timing information, flavour tagging

From Michele Selvaggi

Overview of technical workflow

Overview of technical workflow

Rely on the key4hep project

Same approach as for FCC-ee studies

Key4hep project

- Turnkey software for future accelerators, used by different communities, e.g. CEPC, ILC, muon collider, ..
- Provides complete workflow from generator to analysis (although for FCC we are not using every step)
- In practice: A complete software stack to set up in one simple step

source /cvmfs/sw.hsf.org/key4hep/setup.sh

Event generation

- Typically use MadGraph and Powheg for FCC-hh studies with PDF sets from LHAPDF
 - Produced with common FCC framework: <u>EventProducer</u>
- Database of available <u>LHE events here</u>

The <u>k4SimDelphes</u> tool allows us to run
 Pythia8 and Delphes in one step (and converts to EDM4hep format)

- The <u>k4SimDelphes</u> tool allows us to run

 Pythia8 and Delphes in one step
- Two current Delphes scenarios for FCC-hh:

Note: Both scenarios implement fixes w.r.t the original, e.g. bremsstrahlung for electrons, multiple scattering, resolutions in forward region

The <u>k4SimDelphes</u> tool allows us to run

Pythia8 and Delphes in one step

Two current Delphes scenarios for FCC-hh:

- Scenario I: Idealistic scenario for ultimate precision
- Scenario II: Baseline scenario based on FCC-hh detector concept from CDR

	Relative <i>p</i> resolution		Efficiency	
	Scenario I	Scenario II	Scenario I	Scenario II
Electrons	0.4-1%	0.8-3%	76-95%	72-90%
Muons	0.5-3%	1-6%	90-99%	88-97%
Medium b-tagging			80-90%	76-86%

FCC-hh Samples

Gen Les Houches	
Delphes v0.2	
Delphes v0.3	
Delphes v0.4	

- The <u>k4SimDelphes</u> tool allows us to run Pythia8 and Delphes in one step
 - Two current Delphes scenarios for FCC-hh:
 - Scenario I: Idealistic scenario for ultimate precision
 - Scenario II: Baseline scenario based on FCC-hh detector concept from CDR
- Large scale productions run with the
 EventProducer framework and will be available
 in official database

EDM4hep data model

"A generic event data model for future HEP collider experiments"

But how do we analyse it? Could read directly, but existing FW FCCAnalyses handles it for us

FCCAnalyses framework


```
# Mandatory: analyzers function to define the analysis graph, please make
# sure you return the dataframe, in this example it is dframe2
def analyzers(self, dframe):
   Analysis graph.
   dframe2 = (
       dframe
       .Define("weight", "EventHeader.weight")
       .Define("gamma", "FCCAnalyses::ReconstructedParticle::get(Photon objIdx.index, ReconstructedParticles)")
       .Define("selpt_gamma", "FCCAnalyses::ReconstructedParticle::sel_pt(30.)(gamma)")
       .Define("sel_gamma_unsort", "FCCAnalyses::ReconstructedParticle::sel_eta(4)(selpt_gamma)")
       .Define("sel gamma", "AnalysisFCChh::SortParticleCollection(sel gamma unsort)") #sort by pT
       .Define("ngamma", "FCCAnalyses::ReconstructedParticle::get n(sel gamma)")
       .Define("q1 e", "FCCAnalyses::ReconstructedParticle::qet e(sel gamma)[0]")
       .Define("q1_pt", "FCCAnalyses::ReconstructedParticle::qet_pt(sel_gamma)[0]")
       .Define("g1_eta", "FCCAnalyses::ReconstructedParticle::get_eta(sel_gamma)[0]")
       .Define("g1_phi", "FCCAnalyses::ReconstructedParticle::get_phi(sel_gamma)[0]")
       .Define("g2_e", "FCCAnalyses::ReconstructedParticle::get_e(sel_gamma)[1]")
       .Define("q2 pt", "FCCAnalyses::ReconstructedParticle::get pt(sel gamma)[1]")
       .Define("q2 eta", "FCCAnalyses::ReconstructedParticle::qet eta(sel qamma)[1]")
       .Define("q2 phi", "FCCAnalyses::ReconstructedParticle::qet_phi(sel_qamma)[1]")
```

- FCCAnalyses is a common software framework to analyse EDM4hep events using ROOT's RDataframe
 - Build an "analysis graph" with very simple syntax in python code
 - C++ libraries for the complex computations
 - Examples and tutorials available <u>here</u>
- Additions for FCC-hh analyses to come:
 - Using generator event weights, reading heavy flavour tagging from Delphes

Resources and current documentation status

- Key4hep is a software project under constant development rely on fixed releases of the software stack, with major updates happening in between
 - Currently the transition to EDM4hep v1 is ongoing, introducing some breaking changes w.r.t. previous versions e.g. name changes, reversing of object links
- For new FCC-hh studies we would like to switch to this new release, working on updating the code & documentation to provide a working example
 - Unfortunately physics was not invariant under release update :(
- Also investigating how to run the event generation step within the key4hep ecosystem

Summary

- Standard FCC-hh fast simulation study workflow relies on the key4hep software stack, as well as common FCC software tools
 - Main players: <u>k4SimDelphes</u>, <u>EventProducer</u>, <u>FCCAnalyses</u>
- All information for FCC-hh physics & performance studies summarized on this page
 - Still under development, please reach out with any feedback!
 - Up-to-date quick start example to come a.s.a. release update issues resolved
 - Planning a large scale EDM4hep event production fcc_v06, if you have any requests for samples you need for your studies please get in touch
- Physics & performance FCC-hh working meetings planned on Thursdays, 4PM
 - Planned to start on 10.10, but due to ECFA workshop exceptionally 17.10 instead?
 - Mailing list: <u>fcc-ped-hh-physicsperformance-espp25@cern.ch</u>

Thank you!

What did we use for the HH studies?

Event generation

Detector simulation

Samples (EDM4HEP)

Physics analysis & statistical interpretation Generators: MG5_aMC, v 2.5.X (bkgs), POWHEG-BOX-V2 (sig) PDF sets: NN23LO1, NNPDF30_nlo_as_0118 from LHAPDF v6.1.6 Production framework: EventProducer from my fork, using custom key4hep release "2023-06-05-fcchh"

Delphes cards: Scenario I & II
Framework: Same EventProducer setup as above
Production Tags: fcc_v05_scenarioI, fcc_v05_scenarioII

Edm4hep status: Pre- official v1 release, v00-08

Analysis framework: FCCAnalyses from my fork, with many custom fixes and additions, branched off in July 2023