Investigating Gas Adsorption and Diffusion Dynamics in Zeolite-Based Membranes for Post-Combustion CO₂ Capture

Presenter: Timothy Manda

Jaramogi Oginga Odinga University of Science and Technology S261/P/9776/24 Supervisors Dr. Livingstone Ochilo Dr. Solomon Omwoma

Introduction

Global CO₂ Emission

- CO₂ is the primary greenhouse gas contributing to global warming

- Power plants and industrial processes are significant sources of emissions

Importance of CCS

- CCS as a vital strategy for reducing greenhouse gases.
- Focus on post-combustion CO₂ capture, which captures CO₂ from flue gases.

Background: Post-Combustion Carbon Capture

- Used in power plants to capture CO₂ after fuel combustion.

- Conventional techniques like amine scrubbing: limitations in large-scale use (high energy consumption, solvent degradation).

Savings-to-investment ratio (SIR) and payback period (PBP) depended on EF and electricity prices

Need for Advanced Solutions

- Current technologies are not energyefficient or economically viable for long-term

Zeolites in CCS:

Advantages over conventional techniques (lower energy consumption, material stability).

tunable pore sizes, high adsorption capacity selective CO₂ separation

Molecular sieving and diffusion studies in gas separation by zeolites

Problem Statement

Challenges in Current CO₂ Capture Technologies leading to increase in atmospheric CO2 concentration

- High energy consumption and operating costs in solvent-based systems.
- Limitations in scalability for industrial applications.

Need for Efficient Solutions

- There's a pressing need to improve the efficiency and costeffectiveness of CCS systems
- Key Question: How can zeolitebased membranes enhance post-combustion CO₂ capture while minimizing energy and operational costs?

Research objectives

Primary objective

 To Investigate the gas adsorption and diffusion dynamics in zeolite-based membranes for enhanced post-combustion CO₂ capture

Specific Objectives

- i. To optimize CO₂ selectivity and separation efficiency in zeolite-based membranes.
- To reduce energy consumption during the CO₂ capture and regeneration process.
- iii. To evaluate the economic and environmental feasibility of using zeolite membranes in large-scale CCS applications

Hypothesis Working Hypothesis

 Zeolite-based membranes can outperform conventional CO₂ capture techniques by providing higher selectivity, efficiency, and lower energy demands for CO₂ separation and regeneration

Methodology

1. Experimental Setup

Zeolite Membrane Selection

Select zeolite membranes based on pore size, surface area, and adsorption characteristics.

- Measure CO₂ adsorption capacity using gas chromatography and breakthrough experiments.
- Evaluate diffusion rates through zeolite membranes using Fick's law.
- Analyze selectivity of CO₂ vs other gases (N₂, O₂) under various temperatures and pressures.

2. Modeling and Simulation

- Computational models to predict gas diffusion dynamics within zeolite pores.
- Simulate adsorption and regeneration cycles to assess energy efficiency

Theoretical Framework

Adsorption Theory

- **Diffusion Dynamics**
- Langmuir and BET isotherms for describing gas adsorption on zeolite surfaces
- Fick's laws of diffusion to model gas transport through the zeolite membrane.
- The impact of pore size and structure on diffusion rates and selectivity

Expected Results

• Efficiency Gains

- Zeolite membranes will show higher CO₂ selectivity and lower energy use for regeneration.

• Economic Benefits

- The cost per ton of CO₂ captured will be reduced compared to conventional techniques.

• Scalability

- Zeolite-based membranes will demonstrate potential for large-scale applications in industrial settings.

Significance of the Study

• Contribution to CO₂ Capture Technologies

- This study will advance the development of more efficient and cost-effective CO₂ capture systems.

• Environmental Impact

- Successful implementation could significantly reduce greenhouse gas emissions.

• Industry Relevance

- Findings can be applied to power plants, cement production, and other industries with high CO₂ output.

Conclusion

- Zeolite-based membranes offer a promising alternative to traditional CO₂ capture methods.
- They enhance selectivity, reduce energy demands, and present a sustainable solution for longterm CO₂ capture

Backup

High-Throughput Evaluation of Earth abundant metal Catalysts for CO2 conversion to methane Using Machine Learning and Molecular Simulations

a) Optimized 3x2 Ni structure

b) Perpendicular orientation on the surface

a) BE = -9.75490171eV

b) BE = -9.74915627eV

c) BE = -9.75611590eV

d) BE = -9.75088002eV

e) BE = -9.74872344eV

.