REDWOOD Job Scheduling Optimization

Oct. 2nd, 2024 Shengyu Feng, Jaehyung Kim (CMU)

1

● **Goal**: minimizing makespan (*i.e.*, total time to finish all jobs) ○ Two terms: (1) computing time & (2) data downloading time

● **Variables**: 1) job schedule, 2) job assignment, 3) data assignment

● **Variables**: 1) job schedule, 2) job assignment, 3) data assignment

○ i.e., how the assigned jobs should be computed in order?

● **Variables**: 1) job schedule, 2) job assignment, 3) data assignment

○ i.e., which CN (compute node) computes i-th job

● **Variables**: 1) job schedule, 2) job assignment, 3) data assignment

○ i.e., which SN (local storage node) saves i-th data object

Illustration of Problem

● Assumption: 3 computational nodes, 10 jobs

Notations

Optimization variables

● *Hi,j*∈{0,1}: *job i* is scheduled before *job j* if it is 1

Notations

Optimization variables

● *Hi,j*∈{0,1}: *job i* is scheduled before *job j* if it is 1

● *Aj,c*∈{0,1}: *job j* is assigned to computational *node c* if it is 1

Notations

Optimization variables

● *Hi,j*∈{0,1}: *job i* is scheduled before *job j* if it is 1

- *Aj,c*∈{0,1}: *job j* is assigned to computational *node c* if it is 1
- *Bd,s*∈{0,1}: *data file d* is assigned to *local storage s* if its is 1

+ Some constraints (e.g., unique assignment)

Our solution: AlterMILP

● **Idea: Alternating optimization** by fixing one variable as constant ○ If **variables are splitted** (A_{j,c} vs. H_{i,j},B_{d,s}), then problem **becomes MILP again**

$$
w_d = \sum_{s=1}^{S} t d_1(d, s) B_{d, s}, \quad \forall d \in [D];
$$
\n
$$
l_j = \max_{d \in O_j} \left(\max\{w_d, f_j\} + \sum_{s=1}^{S} \sum_{c=1}^{C} t d_2(d, s, c) A_{j, c} B_{d, s} \right), \quad \forall j \in [J];
$$
\n
$$
f_j \ge V \left(H_{i, j} (A_{j, c} + A_{i, c} - 1) \right) - 1) + (l_i + e_i), \forall i \ne j, i, j \in [J], c \in [C]
$$
\n
$$
e_j = \sum_{c=1}^{C} \exp(j, c) A_{j, c}, \quad \forall j \in [J];
$$
\n
$$
T \ge l_j + e_j, \quad \forall j \in [J];
$$
\n
$$
H_{i, j} \in \{0, 1\}, \quad \forall i \ne j, i, j \in [J];
$$
\n
$$
A_{j, c} \in \{0, 1\}, f_j, l_j, e_j \ge 0, \quad \forall j \in [J], c \in [C];
$$
\n
$$
B_{d, s} \in \{0, 1\}, w_d \ge 0, V >> 0, \quad \forall d \in [D], s \in [S].
$$
\n
$$
(12)
$$

Our solution: AlterMILP

● Also, **constraints are splitted** (but same) to ease the optimization

$$
\begin{array}{ll}\n\text{min} & T & \text{(1)} & \text{minimize} \text{ makespan} \\
\text{s.t.} & H_{i,j} + H_{j,i} = 1, \quad \forall i \neq j, \, i, j \in [J]; \\
& \sum_{c=1}^{C} A_{j,c} = 1, \quad \forall j \in [J]; \\
& \sum_{s=1}^{S} B_{d,s} = 1, \quad \forall d \in [D]; \\
& w_d = \sum_{s=1}^{S} t d_1(d,s) B_{d,s}, \quad \forall d \in [D]; \\
& w_d = \sum_{s=1}^{S} t d_1(d,s) B_{d,s}, \quad \forall d \in [D]; \\
& \sum_{s=1}^{S} \sum_{c=1}^{C} t d_2(d,s,c) A_{j,c} B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{S} \sum_{c=1}^{C} t d_2(d,s,c) A_{j,c} B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{t,j} = \max_{a \in C_j} \left(f_j + \sum_{s=1}^{S} \sum_{c=1}^{C} t d_2(d,s,c) A_{j,c} B_{d,s} \right), \quad \forall j \in [J]; \\
& \sum_{t,j} = \max \{ l_j^1, l_j^2 \}; \\
& \sum_{t,j} = \sum_{c=1}^{C} \exp(j,c) A_{j,c}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{c=1}^{C} x e(j,c) A_{j,c}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{s=1}^{C} t d_2(d,s) B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{t=1}^{C} t d_2(d,s) B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{c=1}^{C} t d_2(d,s) B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{c=1}^{C} t d_2(d,s) B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{s=1}^{C} t d_2(d,s) B_{d,s}, \quad \forall j \in [J]; \\
& \sum_{s=1}^{C} \sum_{s=1}^{C} t
$$

12

Summary of Related Works

● **Considerable baselines**

○ Two categories: *independent* optimization & *joint* optimization

Baselines: Independent Optimization

● **Greedy[1]:** allocate job to next available computational node \circ Random data assignment & job scheduling

14

[1] Park and Kim., Chameleon: a resource scheduler in a data grid environment., IEEE International Symposium on Cluster Computing and the Grid 2003

Baselines: Independent Optimization

● **Ensemble Greedy[1]:** Run the greedy algorithm multiples times with different job order in the queue ○ No longer real-time, but benefit from multiple trials

10 minutes to finish

15

[1] Park and Kim., Chameleon: a resource scheduler in a data grid environment., IEEE International Symposium on Cluster Computing and the Grid 2003

Jar of Stone Method

Each time move a stone from the highest jar to the lowest jar to balance the storage

Baselines: Joint Optimization

● **JDS-HNN[1]**

 \circ Iterating (1) generating new candidate solution via local greedy search \circ (2) Evaluating the candidate and update the best solution

[1] Taheir et al., Hopfield Neural Network for simultaneously job scheduling and data replication in grids, Future Generation Computer Systems 2013 17

Baselines: Joint Optimization

● **JDS-HNN**

 \circ Iterating (1) generating new candidate solution via local greedy search \circ (2) Evaluating the candidate and update the best solution

Experimental Setups

Setups**: Simulated environment** (e.g., cloud computing)[1,2]

- *1. Computational Nodes*: number of computational nodes, computational efficiency (job size/time)
- *2. Data storages*: number of local storages and remote storages
- *3. Data files*: number of data files and their sizes
- *4. Jobs*: number of jobs and the data files they need

[1] Taheri et al., Hopfield neural network for simultaneous job scheduling and data replication in grids., 2013 [2] Casas et al., A balanced scheduler with data reuse and replication for scientific workflows in cloud computing systems., 2017 19

Experimental Setups (Parameters)

● **Computational Nodes**, **Data storages**, **Data objects**, **Jobs**

- Small: 10, 10, 20, 10
- Medium: 20, 20, 100, 50
- \circ Large: 50, 50, 300, 100

Results: Comparison with Baselines

Current algorithm (BCD MILP) outperforms other baselines (under same time)

