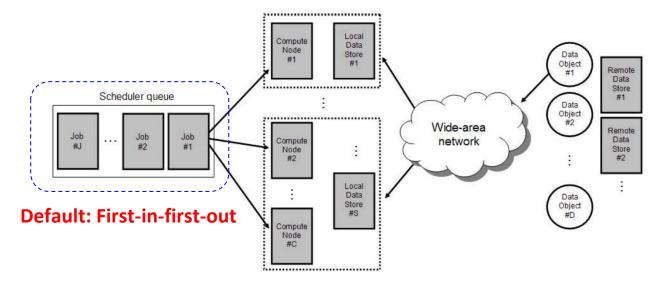
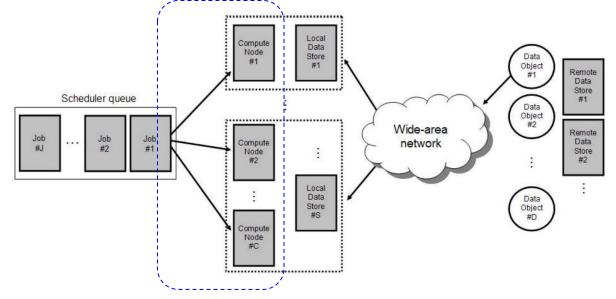

REDWOOD Job Scheduling Optimization

Oct. 2nd, 2024 Shengyu Feng, Jaehyung Kim (CMU)

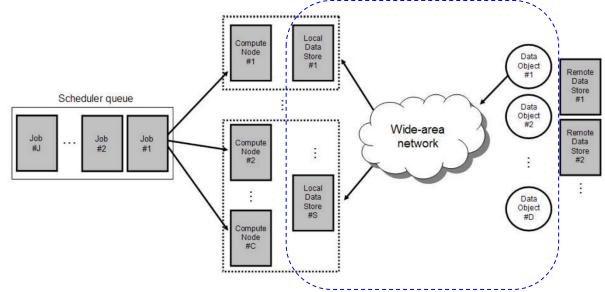
• **Goal**: minimizing makespan (*i.e.*, total time to finish all jobs) • <u>Two terms</u>: (1) computing time & (2) data downloading time



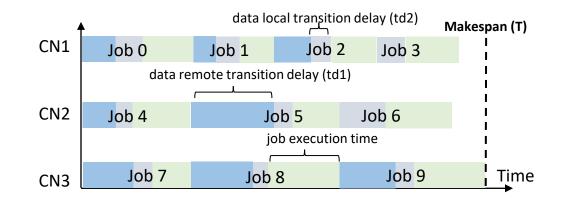
• Variables: 1) job schedule, 2) job assignment, 3) data assignment


• Variables: 1) job schedule, 2) job assignment, 3) data assignment

o i.e., how the assigned jobs should be computed in order?

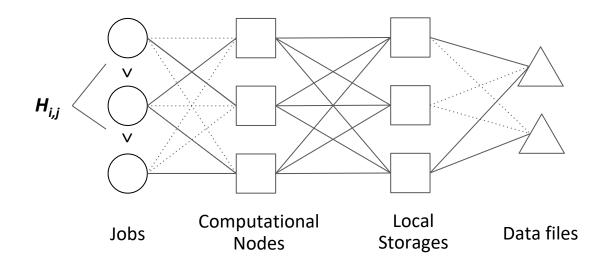

• Variables: 1) job schedule, 2) job assignment, 3) data assignment

o i.e., which CN (compute node) computes i-th job


• Variables: 1) job schedule, 2) job assignment, 3) data assignment

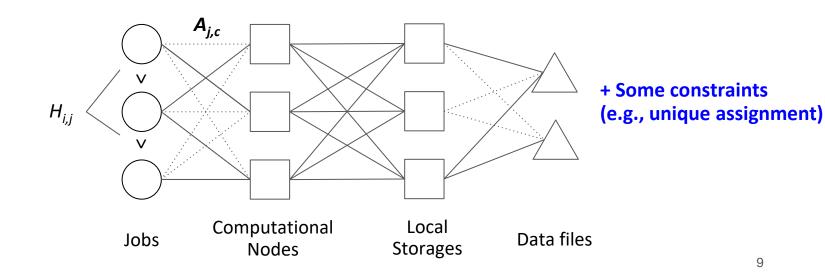
o i.e., which SN (local storage node) saves i-th data object

Illustration of Problem


• Assumption: 3 computational nodes, 10 jobs

Notations

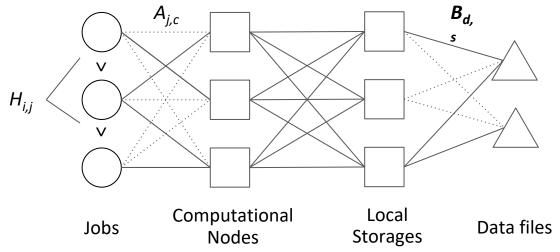
Optimization variables


• $H_{i,i} \in \{0,1\}$: *job i* is scheduled before *job j* if it is 1

Notations

Optimization variables

- *H_{i,j}*∈{0,1}: *job i* is scheduled before *job j* if it is 1 *A_{i,c}*∈{0,1}: *job j* is assigned to computational *node c* if it is 1



Notations

Optimization variables

• $H_{i,i} \in \{0,1\}$: job i is scheduled before job j if it is 1

- A^m_{j,c}∈{0,1}: job j is assigned to computational node c if it is 1
 B_{d,s}∈{0,1}: data file d is assigned to local storage s if its is 1

+ Some constraints (e.g., unique assignment)

Our solution: AlterMILP

Idea: Alternating optimization by fixing one variable as constant
 If variables are splitted (A_{i,c} vs. H_{i,i}, B_{d,s}), then problem becomes MILP again

$$w_{d} = \sum_{s=1}^{S} td_{1}(d, s)B_{d,s}, \quad \forall d \in [D];$$

$$l_{j} = \max_{d \in O_{j}} \left(\max\{w_{d}, f_{j}\} + \sum_{s=1}^{S} \sum_{c=1}^{C} td_{2}(d, s, c)A_{j,c}B_{d,s} \right), \quad \forall j \in [J]; \quad (6)$$

$$f_{j} \ge V \left(H_{i,j}(A_{j,c} + A_{i,c} - 1) - 1\right) + (l_{i} + e_{i}), \quad \forall i \neq j, \, i, j \in [J], \, c \in [C]$$

$$(7)$$

$$e_{j} = \sum_{c=1}^{C} exe(j, c)A_{j,c}, \quad \forall j \in [J]; \quad (8)$$

$$T \ge l_{j} + e_{j}, \quad \forall j \in [J]; \quad (9)$$

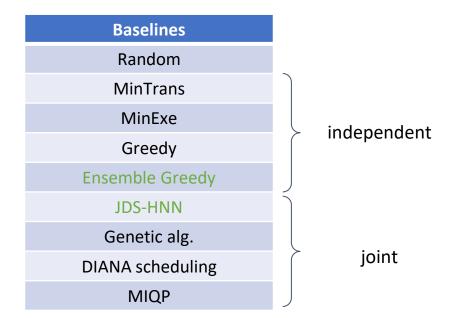
$$H_{i,j} \in \{0, 1\}, \quad \forall i \neq j, \, i, j \in [J]; \quad (10)$$

$$A_{j,c} \in \{0, 1\}, \, f_{j}, l_{j}, e_{j} \ge 0, \quad \forall j \in [J], \, c \in [C]; \quad (11)$$

$$B_{d,s} \in \{0, 1\}, \, w_{d} \ge 0, \, V >> 0, \quad \forall d \in [D], \, s \in [S]. \quad (12)$$

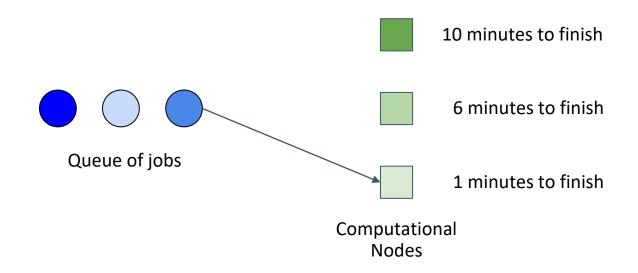
Our solution: AlterMILP

• Also, constraints are splitted (but same) to ease the optimization


$$\begin{array}{c} \min T \\ for the form the$$

12

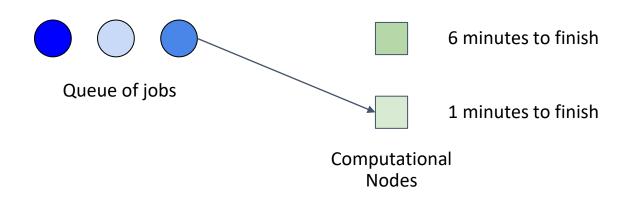
Summary of Related Works


• Considerable baselines

• Two categories: *independent* optimization & *joint* optimization

Baselines: Independent Optimization

Greedy^[1]: allocate job to next available computational node
 Random data assignment & job scheduling

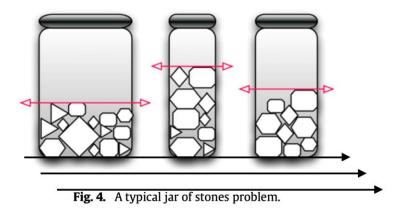

14

[1] Park and Kim., Chameleon: a resource scheduler in a data grid environment., IEEE International Symposium on Cluster Computing and the Grid 2003

Baselines: Independent Optimization

 Ensemble Greedy^[1]: Run the greedy algorithm multiples times with different job order in the queue
 No longer real-time, but benefit from multiple trials

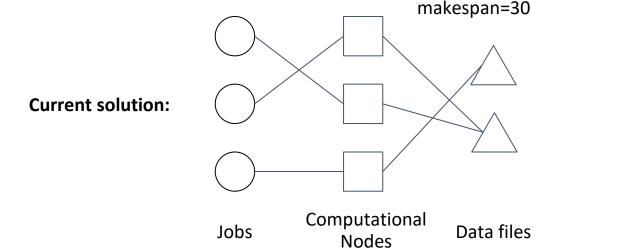
10 minutes to finish



15

[1] Park and Kim., Chameleon: a resource scheduler in a data grid environment., IEEE International Symposium on Cluster Computing and the Grid 2003

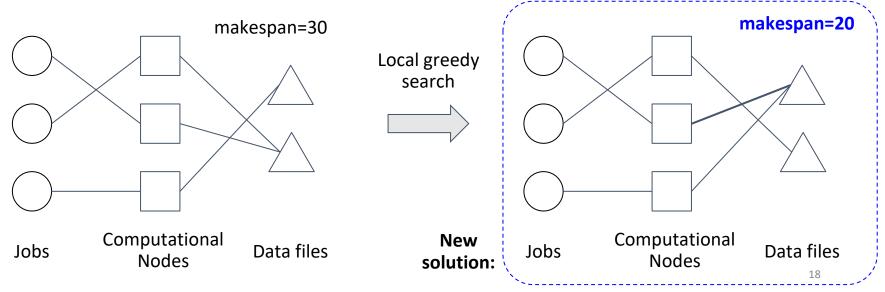
Jar of Stone Method


Each time move a stone from the highest jar to the lowest jar to balance the storage

Baselines: Joint Optimization

• JDS-HNN^[1]

 \circ Iterating (1) generating new candidate solution via local greedy search \circ (2) Evaluating the candidate and update the best solution



[1] Taheir et al., Hopfield Neural Network for simultaneously job scheduling and data replication in grids, Future Generation Computer System 3/2013

Baselines: Joint Optimization

• JDS-HNN

 \circ Iterating (1) generating new candidate solution via local greedy search \circ (2) Evaluating the candidate and update the best solution

Experimental Setups

Setups: Simulated environment (e.g., cloud computing)^[1,2]

- <u>Computational Nodes</u>: number of computational nodes, computational efficiency (job size/time)
- 2. <u>Data storages</u>: number of local storages and remote storages
- 3. Data files: number of data files and their sizes
- 4. Jobs: number of jobs and the data files they need

[1] Taheri et al., Hopfield neural network for simultaneous job scheduling and data replication in grids., 2013
 [2] Casas et al., A balanced scheduler with data reuse and replication for scientific workflows in cloud computing systems., 2017

Experimental Setups (Parameters)

• Computational Nodes, Data storages, Data objects, Jobs

- Small: 10, 10, 20, 10
- Medium: 20, 20, 100, 50
- Large: 50, 50, 300, 100

Baselines	Small	Medium	Large
Random	2903	21052	23221

Results: Comparison with Baselines

Current algorithm (BCD MILP) outperforms other baselines (under same time)

Baselines	Small	Medium	Large
Random	2903	21052	23221
MinTrans	2819	19227	18924
MinExe	2215	<u>9262</u>	<u>8564</u>
Greedy	2278	11304	10371
Ensemble Greedy	1781	10079	9431.3
JDS-HNN	1914	10221	8951
Genetic alg.	1875	12122	13222
MIQP	2453	N/A	N/A
DIANA scheduling	<u>1736</u>	63021	121050
AlterMILP (Ours)	1707	8714	7912