

Tentative new scenario with 2 cells cavities at the Z X. Buffat, I. Karpov, L. Mether, M. Migliorati, K. Oide, R. Soos, F. Zimmerman, M. Zobov

- Parameter tables with 200MV
- Electron cloud with shorter bunch spacing
- Single beam stability
- Beam-beam simulations
- Conclusion

K. Oide

FCC-ee collider p	arameters for th	e GHC lattice at 2	Z, Sep. 27, 2024.		
Beam energy	[GeV]		45.6		
Layout		PA31-3.0			
# of IPs		4			
Circumference	[km]		90.658728		
Bend. radius of arc dipole	[km]		10.021		
Energy loss / turn	[GeV]		0.0390		
SR power / beam	[MW]		50		
Beam current	[mA]		1283		
Colliding bunches / beam		11200	17200	11200	
Colliding bunch population	$[10^{11}]$	2.16	1.41	2.16	
Hor. emittance at collision ε_x	[nm]		0.70		
Ver. emittance at collision ε_y	[pm]		1.9		
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]		0.87		
Arc cell		Long 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.67			
Arc sext families		75			
$\beta^*_{x/y}$	[mm]	110 / 0.7			
Transverse tunes $Q_{x/y}$		218.158 / 222.220			
Chromaticities $Q'_{x/y}$		0 / + 5			
Energy spread (SR/BS) σ_{δ}	[97]	0.039 / 0.110	0.039 / 0.116	$0.039 \ / \ 0.149$	
Bunch length (SR/BS) σ_z	(mm]	5.57 / 15.6	3.28 / 9.73	3.28 / 12.47	
RF voltage $400/800$ MHz	[GV]	0.079 / 0 0.2 / 0			
Harm. number for 400 MHz		121200			
RF frequency (400 MHz)	MHz		400 787190		
Synchrotron tune Q_s		0.0289 0.0489		189	
Long. damping time	[turns]				
RF acceptance	[%]	1.06 2.38			
Energy acceptance (DA)	[%]	± 1.0			
Beam crossing angle at IP θ_x	[mrad]	± 15			
Crab waist ratio	[%]	50			
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.0977	0.0037 / 0.1013	0.0034 / 0.122	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$	[]	26.6	16.59	21.3	
Lifetime $(q + BS + lattice)$	[sec]	11800	-	-	
Lifetime $(lum)^b$	[sec]	1330	-	-	
Luminosity / IP	$[10^{34}/{\rm cm^2 s}]$	143	150	179	

• The proposal is to increase the total voltage in order to limit transient beam loading

^aincl. hourglass.

 b only the energy acceptance is taken into account for the cross section, no beam size effect.

K. Oide

FCC-ee collider p	arameters for th	e GHC lattice at Z	Z, Sep. 27, 2024.		
Beam energy	[GeV]		45.6		
Layout			PA31-3.0		
# of IPs			4		
Circumference	[km]		90.658728		
Bend. radius of arc dipole	[km]		10.021		
Energy loss / turn	[GeV]		0.0390		
SR power / beam	[MW]		50		
Beam current	[mA]		1283		
Colliding bunches / beam		11200	17200	11200	
Colliding bunch population	$[10^{11}]$	2.16	1.41	2.16	
Hor. emittance at collision ε_x	[nm]		0.70		
Ver. emittance at collision ε_y	[pm]		1.9		
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87			
Arc cell		Long 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.67			
Arc sext families		75			
$\beta^*_{x/y}$	[mm]	110 / 0.7			
Transverse tunes $Q_{x/y}$		218.158 / 222.220			
Chromaticities $Q'_{x/y}$		0 / +5			
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.110	0.039 / 0.116	0.039 / 0.149	
Bunch length (SR/BS) σ_z	[mm]	5.57 / 15.6	3.28 / 9.73	3.28 / 12.47	
RF voltage 400/800 MHz	[GV]	0.079 / 0 0.2 / 0			
Harm. number for 400 MHz		121200			
RF frequency (400 MHz)	MHz		400 787120		
Synchrotron tune Q_s		0.0289 0.0489			
Long. damping time	[turns]				
RF acceptance	[%]	1.06 2.38			
Energy acceptance (DA)	[%]	± 1.0			
Beam crossing angle at IP θ_x	[mrad]	± 15			
Crab waist ratio	[%]	50			
Beam-beam ξ_x/ξ_y^a		$0.0022 \ / \ 0.0977$	0.0037 / 0.1013	0.0034 / 0.122	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	16.59	21.3	
Lifetime $(q + BS + lattice)$	[sec]	11800	-	-	
Lifetime (lum) ^b	[sec]	1330	-	-	
Luminosity / \mathbf{IP}	$[10^{34}/{\rm cm^2 s}]$	143	150	179	

- The proposal is to increase the total voltage in order to limit transient beam loading
 - → Shorter bunch length

^aincl. hourglass.

 b only the energy acceptance is taken into account for the cross section, no beam size effect.

K. Oide

FCC-ee collider p	arameters for th	e GHC lattice at Z	Z, Sep. 27, 2024.		
Beam energy	[GeV]		45.6		Í -
Layout			PA31-3.0		Î.
# of IPs			4		l i
Circumference	[km]		90.658728		1
Bend. radius of arc dipole	[km]		10.021		l i
Energy loss / turn	[GeV]		0.0390		l l
SR power / beam	[MW]		50		l l
Beam current	[mA]		1200		1
Colliding bunches / beam		11200	17200	11200	
Colliding bunch population	$[10^{11}]$	2.16	1.41	2.16	
Hor. emittance at collision ε_x	[nm]		0.70		Í -
Ver. emittance at collision ε_y	[pm]		1.9		ĺ –
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87			ĺ –
Arc cell		Long 90/90			1
Momentum compaction α_p	$[10^{-6}]$	28.67			ĺ.
Arc sext families		75			1
$\beta^*_{x/y}$	[mm]	110 / 0.7			ĺ –
Transverse tunes $Q_{x/y}$		218.158 / 222.220			l l
Chromaticities $Q'_{x/y}$		0 / +5			l l
Energy spread (SR/BS) σ_{δ}	[97]	0.039 / 0.110	0.039 / 0.116	0.039 / 0.149	
Bunch length (SR/BS) σ_z	(mm]	5.57 / 15.6	3.28 / 9.73	3.28 / 12.47	1
RF voltage 400/800 MHz	[GV]	0.079 / 0	0.2		
Harm. number for 400 MHz		121200			ĺ –
RF frequency (400 MHz)	MHz		400 787190		
Synchrotron tune Q_s		0.0289	0.04	189	
Long. damping time	[turns]		1171		
RF acceptance	[%]	1.06	2.3	38	ĺ –
Energy acceptance (DA)	[%]	± 1.0			
Beam crossing angle at IP θ_x	[mrad]	± 15			
Crab waist ratio	[%]	50			1
Beam-beam ξ_x/ξ_y^a		$0.0022 \ / \ 0.0977$	$0.0037 \ / \ 0.1013$	$0.0034 \ / \ 0.122$	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	16.59	21.3	
Lifetime $(q + BS + lattice)$	[sec]	11800	-	-	
Lifetime $(lum)^b$	[sec]	1330	-	-	
Luminosity / IP	$[10^{34}/cm^2s]$	143	150	179	Í -

- The proposal is to increase the total voltage in order to limit transient beam loading
 - \rightarrow Shorter bunch length
- Proposal 1:
 - Increase the number of bunches an maintain the beam-beam parameter
 - \rightarrow e-cloud issue

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section, no beam size effect.

K. Oide

FCC-ee collider p		e GHC lattice at 2	Z, Sep. 27, 2024.		_
Beam energy	[GeV]	45.6			
Layout			PA31-3.0		ĺ
# of IPs			4		
Circumference	[km]		90.658728		
Bend. radius of arc dipole	[km]		10.021		
Energy loss / turn	[GeV]		0.0390		
SR power / beam	[MW]		50		
Beam current	[mA]		1200		
Colliding bunches / beam		11200	17200	11200	
Colliding bunch population	$[10^{11}]$	2.16	1.41	2.16	
Hor. emittance at collision ε_x	[nm]		0.70		
Ver. emittance at collision ε_y	[pm]		1.9		
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87			
Arc cell		Long 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.67			1
Arc sext families		75			Í
$\beta^*_{x/y}$	[mm]	110 / 0.7			
Transverse tunes $Q_{x/y}$		218.158 / 222.220			
Chromaticities $Q'_{x/y}$		0 / +5			
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.110	0.039 / 0.116	0.039 / 0.149	
Bunch length (SR/BS) σ_z	mm]	5.57 / 15.6	3.28 / 9.73	3.28 / 12.47	
RF voltage 400/800 MHz	[GV]	0.079 / 0	0.2		
Harm. number for 400 MHz		,	121200	/	Γ
RF frequency (400 MHz)	MHz	400 787120			
Synchrotron tune Q_s		0.0289 0.0489			
Long. damping time	[turns]		1151		
RF acceptance	[%]	1.06 2.38			
Energy acceptance (DA)	[%]	± 1.0			
Beam crossing angle at IP θ_x	[mrad]	± 15			
Crab waist ratio	[%]	JU			
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.0977	0.0037 / 0.1013	0.0034 / 0.122	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	16.59	21.3	
Lifetime $(q + BS + lattice)$	[sec]	11800	-	-	
Lifetime $(lum)^b$	[sec]	1330	-	-	
Luminosity / \mathbf{IP}	$[10^{34}/cm^2s]$	143	150	179	

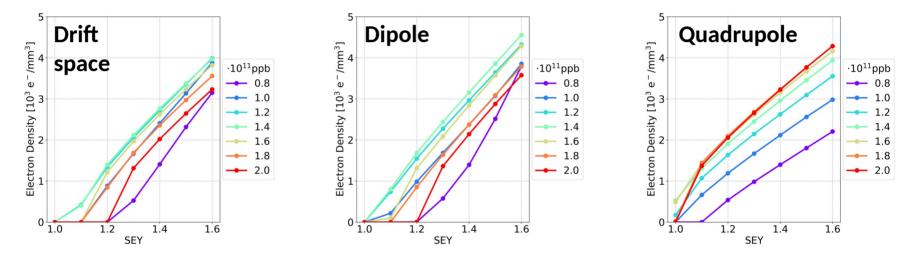
- The proposal is to increase the total voltage in order to limit transient beam loading
 - \rightarrow Shorter bunch length
- Proposal 1:
 - Increase the number of bunches an maintain the beam-beam parameter
 - \rightarrow e-cloud issue
- Proposal 2:
 - Allow for a higher beambeam parameter

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section, no beam size effect.

K. Oide

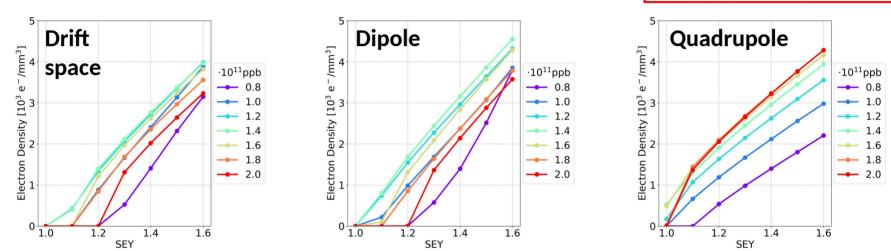
FCC-ee collider pa		e GHC lattice at 2	Z, Sep. 27, 2024.		_
Beam energy	[GeV]	45.6			
Layout		PA31-3.0			
# of IPs		4			
Circumference	[km]		90.658728		
Bend. radius of arc dipole	[km]		10.021		
Energy loss / turn	[GeV]		0.0390		
SR power / beam	[MW]		50		
Beam current	[mA]		1200		
Colliding bunches / beam		11200	17200	11200	
Colliding bunch population	$[10^{11}]$	2.16	1.41	2.16	
Hor. emittance at collision ε_x	[nm]		0.70		
Ver. emittance at collision ε_y	[pm]		1.9		
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.87			
Arc cell			Long 90/90		
Momentum compaction α_p	$[10^{-6}]$	28.67]
Arc sext families		75			
$\beta^*_{x/y}$	[mm]	110 / 0.7			
Transverse tunes $Q_{x/y}$		218.158 / 222.220			
Chromaticities $Q'_{x/y}$		0 / 15			
Energy spread (SR/BS) σ_{δ}	[97]	$0.039 \ / \ 0.110 \ \ 0.039 \ / \ 0.116 \ \ 0.039 \ / \ 0.149$			
Bunch length (SR/BS) σ_z	(mm]	5.57 / 15.6	3.28 / 9.73	3.28 / 12.47	
RF voltage 400/800 MHz	Gvi	0.079 / 0	0.2	/ 0	
Harm. number for 400 MHz		121200			I
RF frequency (400 MHz)	MHz	400 787190			
Synchrotron tune Q_s		0.0289 0.0489			
Long. damping time	[turns]				
RF acceptance	[%]	1.06 2.38			
Energy acceptance (DA)	[%]	± 1.0			
Beam crossing angle at IP θ_x	[mrad]	± 15			
Crab waist ratio	[%]	30			
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.0977	0.0037 / 0.1013	0.0034 / 0.122	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.6	16.59	21.3	1
Lifetime $(q + BS + lattice)$	[sec]	11800	-	-	
Lifetime $(lum)^b$	[sec]	0661	-		
Luminosity / IP	$[10^{34}/c{ m n}^2{ m s}]$	143	150	179	


- The proposal is to increase the total voltage in order to limit transient beam loading
 - \rightarrow Shorter bunch length
- Proposal 1:
 - Increase the number of bunches an maintain the beam-beam parameter
 - \rightarrow e-cloud issue
- Proposal 2:
 - Allow for a higher beambeam parameter

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section, no beam size effect.

Simulation Results: Bunch Intensity L. Sabato

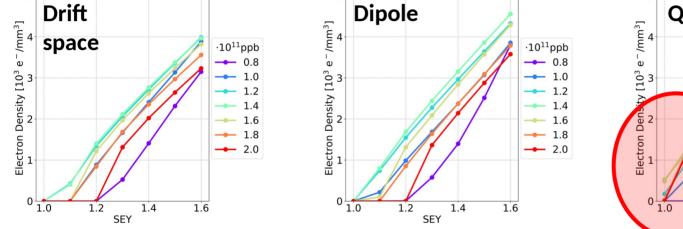

• bunch spacing 15 ns, longer bunch length:

- In the drift space and dipole, the electron density has a similar behaviour with respect to the bunch intensity Othe dependence on the bunch is not monotonic: the worst case is the **1.4-10¹¹ ppb**
- In the quadrupole,

O the bunch intensity has a non-negligible effect on the electron density O less bunch intensity less electron density

15/05/2023

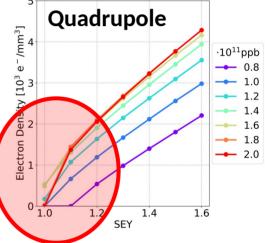
L. Sabato


Simulation Results: Bunch Intensity

bunch spacing 15 ns, longer bunch length:

- In the drift space and dipole, the electron density has a similar behaviour with respect to the bunch intensity Othe dependence on the bunch is not monotonic: the worst case is the **1.4**•10¹¹ ppb
- In the quadrupole, Othe bunch intensity has a non-negligible effect on the electron density Oless bunch intensity less electron density

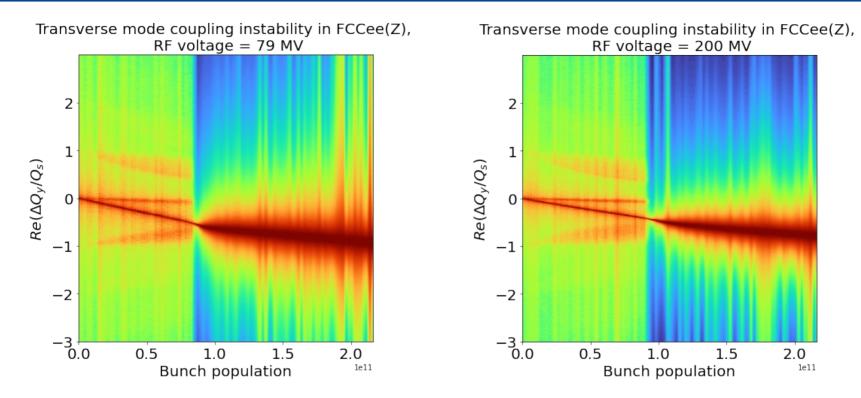
15/05/2023


Not exactly the right scenario considered, but bunch length is not the main driver

Simulation Results: Bunch Intensity

• bunch spacing 15 ns, longer bunch length:

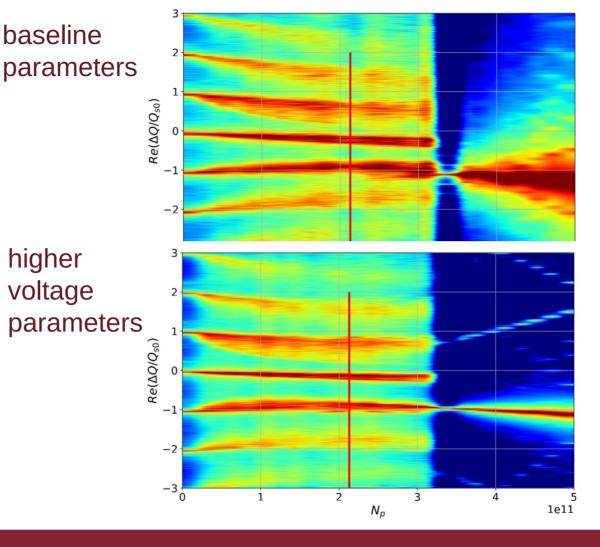
Not exactly the right scenario considered, but bunch length is not the main driver



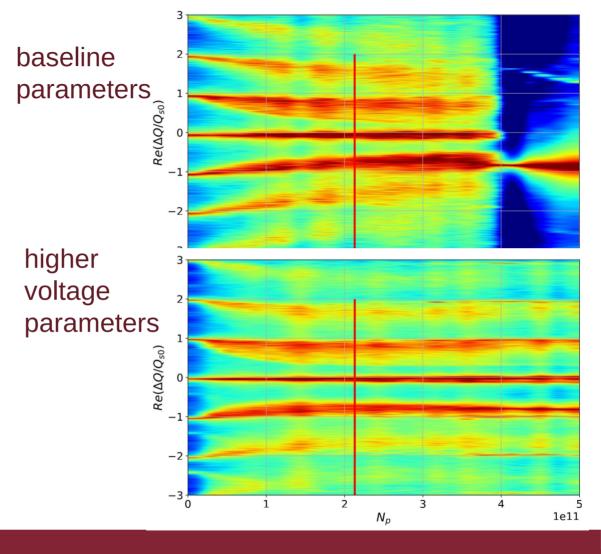
- In the drift space and dipole, the electron density has a similar behaviour with respect to the bunch intensity Othe dependence on the bunch is not monotonic: the worst case is the **1.4**•**10**¹¹ **ppb**
- In the quadrupole, Othe bunch intensity has a non-negligible effect on the electron density Oless bunch intensity less electron density

Multipacting (and beam instabilities) are expected already with an SEY of 1.0

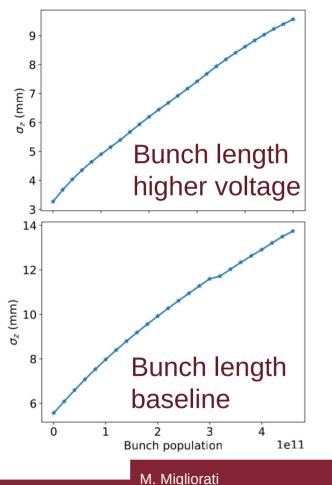
TMCI without beam-beam, damper or chroma


R. Soos

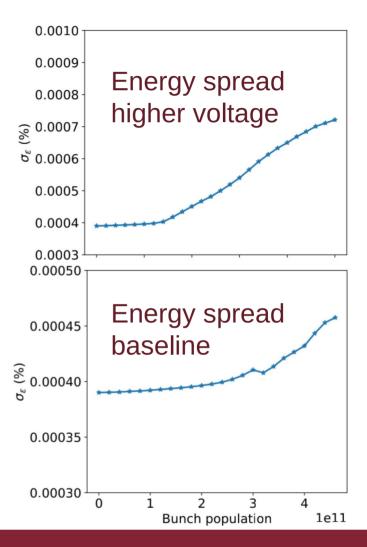
• The tune shift driven by the impedance is larger due to the shorter bunch, but since Qs is larger, the TMCI occurs at the same intensity

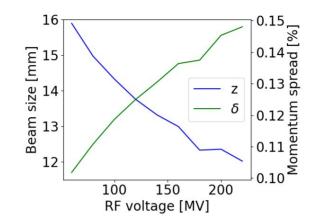

TMCI

With an (ideal) bunch-by-bunch feedback system on (damping of 4 turns), chroma = 5, and the current impedance model, no noticeable differences are found in the vertical plane between the two regimes. If the lower single bunch population (1.41x10¹¹) is chosen with the higher voltage, the TMCI threshold margin is, of course, larger.

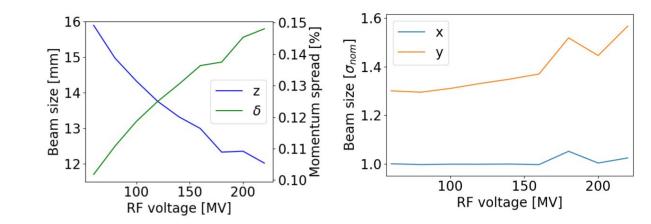


TMCI

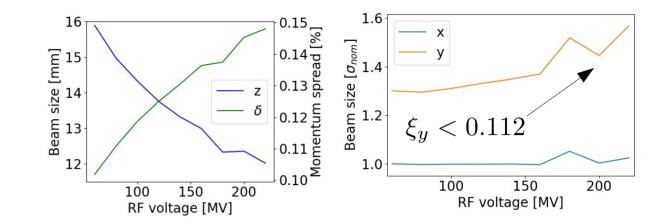

In the same conditions, in the horizontal plane, no TMCI is observed in the higher voltage regime.


Bunch length and energy

If, with higher voltage, the higher single bunch population option is chosen (2.16x10¹¹), there could be a bit of microwave instability due to the shorter zero current bunch length.



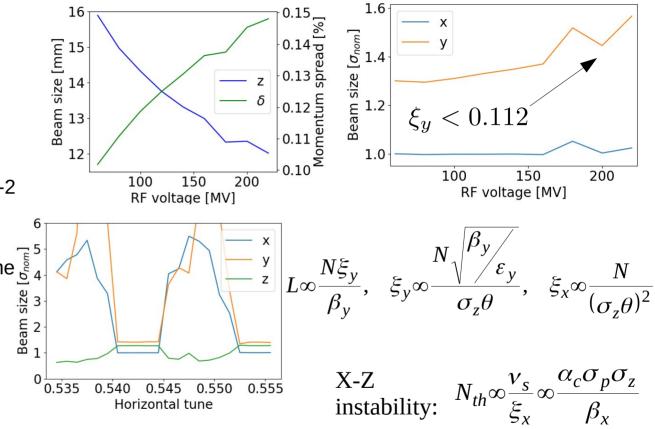
• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table


• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table

 \rightarrow Additional blowup in the vertical plane with higher voltage

• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table

 \rightarrow Additional blowup in the vertical plane with higher voltage

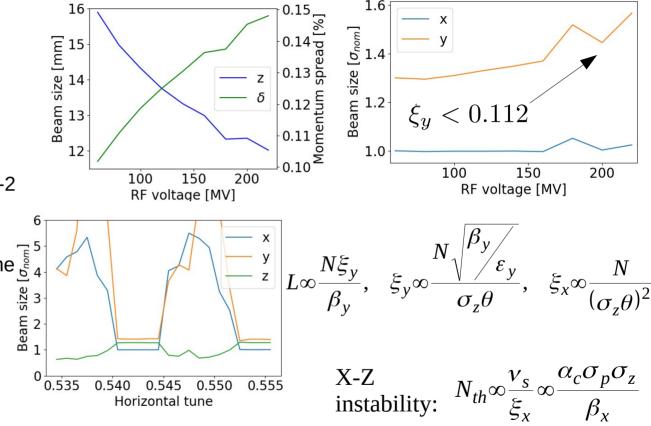


• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table

 $\rightarrow\,$ Additional blowup in the vertical plane with higher voltage

•

- Strong-strong simulations show a horizontal tune space of \sim 3E-3 (i.e. 1.2E-2 for the total machine \rightarrow similar to other options)
 - Compatible with the synchrotron tune spread with RP (From I. Karpov at last meeting: 2.5e-3)


• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table

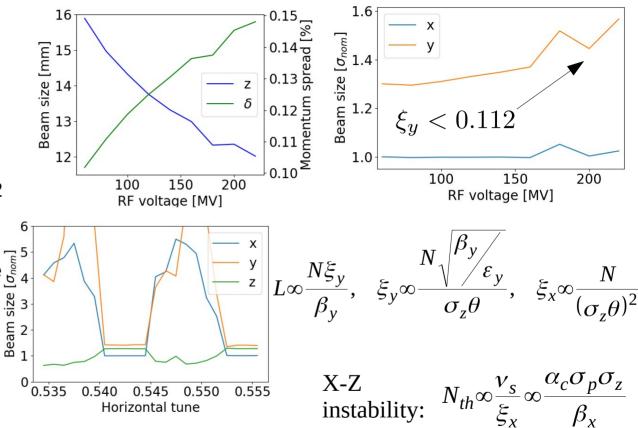
 $\rightarrow\,$ Additional blowup in the vertical plane with higher voltage

•

- Strong-strong simulations show a horizontal tune space of \sim 3E-3 (i.e. 1.2E-2 for the total machine \rightarrow similar to other options)
 - Compatible with the synchrotron tune 5 4
 spread with RP (From I. Karpov at last meeting: 2.5e-3)
 → Need to consider additional

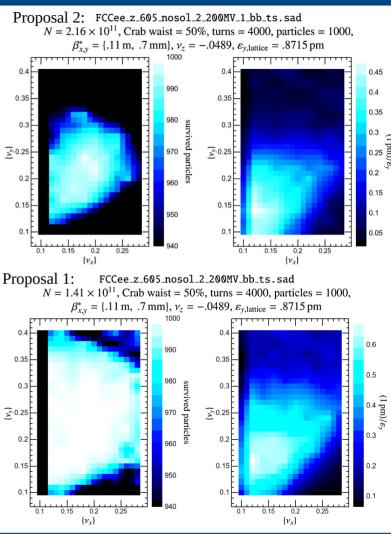
→ Need to consider additional synchrotron tune spread and potentially additional odd synchrobetatron resonance with longitudinal impedance

• Quasi-strong-strong simulation with beam-beam (no impedance) are agreement with Oide's parameter table


 $\rightarrow\,$ Additional blowup in the vertical plane with higher voltage

•

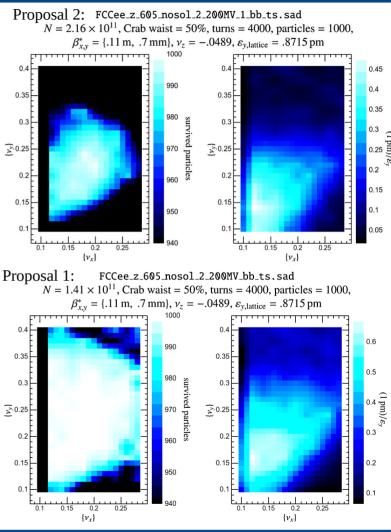
- Strong-strong simulations show a horizontal tune space of \sim 3E-3 (i.e. 1.2E-2 for the total machine \rightarrow similar to other options)
 - Compatible with the synchrotron tune 5 4
 spread with RP (From I. Karpov at last meeting: 2.5e-3)
 → Need to consider additional


→ Need to consider additional synchrotron tune spread and potentially additional odd synchrobetatron resonance with longitudinal impedance

 \rightarrow In case of issues, one would need to consider larger β_x to increase the

Weak-strong tune survey K. Oide

• The area of good tunes is reduced due to the larger beam-beam parameter


9 / 10

Weak-strong tune survey K. Oide

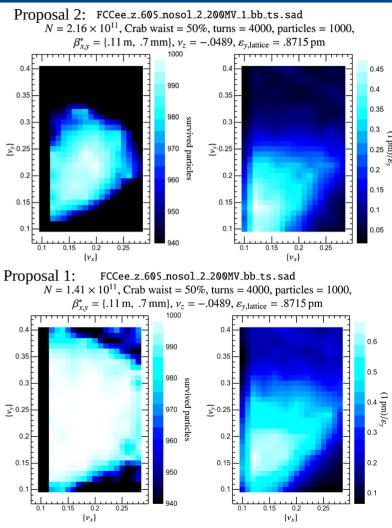
$$L \propto \frac{N\xi_y}{\beta_y}, \quad \xi_y \propto \frac{N\sqrt{\beta_y/\varepsilon_y}}{\sigma_z \theta}, \quad \xi_x \propto \frac{N}{(\sigma_z \theta)^2}$$

• The area of good tunes is reduced due to the larger beam-beam parameter

 \rightarrow Consider larger vertical emittance, i.e. 'coarser' optics tuning (+25% brings both the luminosity and the vertical beam-beam tune shift to the level of the present '80MV' scenario) ? (See K. Oide)

9/10

Weak-strong tune survey K. Oide


$$L \propto \frac{N\xi_y}{\beta_y}, \quad \xi_y \propto \frac{N\sqrt{\frac{\beta_y}{\varepsilon_y}}}{\sigma_z \theta}, \quad \xi_x \propto \frac{N}{(\sigma_z \theta)^2}$$

• The area of good tunes is reduced due to the larger beam-beam parameter

 \rightarrow Consider larger vertical emittance, i.e. 'coarser' optics tuning (+25% brings both the luminosity and the vertical beam-beam tune shift to the level of the present '80MV' scenario) ? (See K. Oide)

- Beamstrahlung does not depend strongly on the vertical emittance:

$$\frac{1}{\rho_{\min}} \propto \frac{N_p}{\gamma \sigma_x \sigma_z} \propto \frac{\xi_y}{\sqrt{\beta_x^* \beta_y^*}} \sqrt{\frac{\varepsilon_y}{\varepsilon_x}}$$

9/10

 The new scenario with higher voltage and reduced bunch population (proposal 1 featuring 15ns bunch spacing) seems difficult due to the electron cloud instability driven by multipacting in the quadrupoles (would require SEY < 1).

- The new scenario with higher voltage and reduced bunch population (proposal 1 featuring 15ns bunch spacing) seems difficult due to the electron cloud instability driven by multipacting in the quadrupoles (would require SEY < 1).
- The new scenario with higher voltage and maintaining the bunch population (proposal 2) seems promising, but required a few additional iteration to reach an optimal state
 - The reduction of bunch length linked to the increased voltage is partially compensated by higher beamstrahlung (→ larger energy spread), further lengthening is expected due to the longitudinal impedance → Combine effect of longitudinal impedance and beam-beam should be further studied (Main concern: horizontal tune space between sidebands → X-Z instability)

- The new scenario with higher voltage and reduced bunch population (proposal 1 featuring 15ns bunch spacing) seems difficult due to the electron cloud instability driven by multipacting in the quadrupoles (would require SEY < 1).
- The new scenario with higher voltage and maintaining the bunch population (proposal 2) seems promising, but required a few additional iteration to reach an optimal state
 - The reduction of bunch length linked to the increased voltage is partially compensated by higher beamstrahlung (→ larger energy spread), further lengthening is expected due to the longitudinal impedance → Combine effect of longitudinal impedance and beam-beam should be further studied (Main concern: horizontal tune space between sidebands → X-Z instability)
 - The shorter bunch length leads to a larger vertical beam-beam tune shift. If problematic, the shift could be reduced with a larger vertical emittance, maintaining the luminosity of the current '80MV' scheme.

- The new scenario with higher voltage and reduced bunch population (proposal 1 featuring 15ns bunch spacing) seems difficult due to the electron cloud instability driven by multipacting in the quadrupoles (would require SEY < 1).
- The new scenario with higher voltage and maintaining the bunch population (proposal 2) seems promising, but required a few additional iteration to reach an optimal state
 - The reduction of bunch length linked to the increased voltage is partially compensated by higher beamstrahlung (→ larger energy spread), further lengthening is expected due to the longitudinal impedance → Combine effect of longitudinal impedance and beam-beam should be further studied (Main concern: horizontal tune space between sidebands → X-Z instability)
 - The shorter bunch length leads to a larger vertical beam-beam tune shift. If problematic, the shift could be reduced with a larger vertical emittance, maintaining the luminosity of the current '80MV' scheme.
 - Larger synchrotron tune is beneficial for most collective effect, thus compensating the detrimental effect of the bunch length

- The new scenario with higher voltage and reduced bunch population (proposal 1 featuring 15ns bunch spacing) seems difficult due to the electron cloud instability driven by multipacting in the quadrupoles (would require SEY < 1).
- The new scenario with higher voltage and maintaining the bunch population (proposal 2) seems promising, but required a few additional iteration to reach an optimal state
 - The reduction of bunch length linked to the increased voltage is partially compensated by higher beamstrahlung (→ larger energy spread), further lengthening is expected due to the longitudinal impedance → Combine effect of longitudinal impedance and beam-beam should be further studied (Main concern: horizontal tune space between sidebands → X-Z instability)
 - The shorter bunch length leads to a larger vertical beam-beam tune shift. If problematic, the shift could be reduced with a larger vertical emittance, maintaining the luminosity of the current '80MV' scheme.
 - Larger synchrotron tune is beneficial for most collective effect, thus compensating the detrimental effect of the bunch length
 - For polarisation, the beneficial impact of the larger Qs is partly compensated by the increase in momentum spread ($v_s \sigma_s / Qs \sim 1.15$, instead of 1.3-1.4 in current '80MV' scheme)