

CERN is founded after the WWII

Neutron

Electron

CERN = Conseil Européen pour la Recherche <u>Nucléaire</u>

CERN is founded by 12 European States on September 29, 1954 - 70 years ago

Today - the world largest laboratory for particle physics

Yearly budget: ~ 1400 MCHF

Personnel:

~2660 Staff members

- ~840 Fellows
- ~350 Students

~12000 Users

Observers: EU, USA, Japan, UNESCO

Distribution of All CERN Users by Nationality on 27 January 2020

The life of the Universe

Our scientific challenge - understand the "just after" the Big Bang

CERN

The tools of the field

1. Accelerators:

To accelerate particles up to very high energies and make them collide

2. Detectors:

Gigantic instruments to record the information about the particles created in the collisions (trajectory, energy, electric charge...)

3. Computing:

To record, store, distribute and analyze the enormous quantity of data accumulated by the detectors

CERN accelerators complex

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-To- Neutrons Time Of Flight

ALIC

The LHC - the world's most powerful accelerator

- A 27 km long tunnel
- Thousands of superconductor electromagnets
- An ultra vacuum: 10x more empty than on the Moon
- The coldest place in the Universe: -271°C

The largest and most complex detectors

- Cathedrals dedicated to Science 100m underground
- 600 million
 collisions per
 second recorded
 by hundreds of
 millions of sensors
- Thousands of collaborators

The largest scientific computing grid

- ~1.4M CPU cores and 1.5EB of data on 170 sites in 42 countries, allowing 12 000 physicists around the world the power to process it the LHC data
- It runs over 2 million tasks per day and, at the end of the LHC's LS2, global transfer rates regularly exceeded 260 GB/s.

LHC schedule

Shutdown/Technical stop Protons physics Ions (tbc after LS4) Commissioning with beam Hardware commissioning

Last update: June 24

Challenges for ALICE in Run 3

- **Completely new detector readout** and **substantial detector upgrades:** new ITS, MFT, FIT. New GEM for TPC readout.
- Reconstruct TPC data in **continuous readout** in combination with triggered detectors.
- . Reconstruct O(100x) more events online.
- **Store O(100x)** more events (needs factor 36x for TPC compression). Cannot store all raw data, use **GPUs to do compression online**.
- WLCG "flat budget" scenario (4x more resources over 10 years, for 100x more events).
 Use online GPU farm offline to speedup processing.

From < 1 kHz single events in Run 2...

ALICE IN RUN 3: THE O² PROJECT

ALIC

Asynchronous

					T
	-				10
			 	 	U.
	-		 		
	-				
					N
					1
	-	-			-8
					l
					I.
					1
	-				1
					1
	-				-8
	-				1
					. 11
					Co
	-				-1
					25
	-				
1.000 A					L
10 ⁻¹ 1					
	1000				
1874.					
Stige.					100
Aller.					-
	and the second				

	70 MI100 EPNs	280 MI50 EPNs	4 Calib Nodes	
GPU	8 AMD Instinct™ MI100 32 GB	8 AMD Instinct™ MI50 32 GB		
CPU	2 AMD EPYC™ 7552, 48 cores	2 AMD EPYC™ 7452, 32 cores	2 AMD EPYC™ 7452, 32 cores	
MEMORY	1TB DDR4 3200 MHz	512GB DDR4 3200 MHz	512GB DDR4 3200 MHz	
Networks	IB ´	100 Gb/s, ETH 1 (Gb/s	

The ALICE Grid - individual computing centres

The ALICE Grid middleware, JAliEn

The ALICE Grid - some numbers

ALICE resources evolution

Total allocated cores per site

Romanian contribution to computing resources

AliEn SE	Catalogue statistics					
AliEn name	Tier	Size	Used	Free	Usage	
ALICE::ISS::EOS	2	5.637 PB	4.149 PB	1.488 PB	73.6%	
ALICE::NIHAM::EOS	2	3.397 PB	3.034 PB	371.7 TB	89.31%	
ALICE::NIPNE::EOS	2	1.011 PB	709.8 TB	325.8 TB	68.54%	
ALICE::UPB::CCDB	2	100 TB	2.673 TB	97.33 TB	2.673%	
ALICE::UPB::EOS	2	8.242 PB	7.097 PB	1.145 PB	86.11%	
		18.39 PB	14.98 PB	3.409 PB		

~10% of the Tier 1 & Tier 2 resources (CPU and disk storage)

UPB contributions to ALICE computing

Grid monitoring framework (<u>MonALISA</u>), started some 20+ years ago Ask your professors about it ;)

Production Grid site since 2017 ~7000 CPU cores and 8.2 PB of disk storage

Organizer of the Tier1/Tier2 ALICE workshop in 2019

Full member of the ALICE collaboration since 2020

Many opportunities for student projects at all levels GSoC, Bachelor and Master, PhD

CERN collaboration opportunities

Google Summer of Code

many projects proposed by the organization

CERN summer student and OpenLab summer student

2 to 3 months internship, apply in Dec-Jan

Bachelor and master projects

Longer term involvement

Technical student

One year internship at CERN, while still student (short term also possible) Doctoral student

2 options: based in UPB or a CERN position

Fellow, Staff

CERN positions, function of experience - apply directly to them

