Analysis of conversion factors (corepower values) by using HS23

Natalia Szczepanek, Domenico Giordano (IT-TC-LCG)

WLCG Operations Coordination

3rd October 2024

Outlook

- **Corepower** value of a server is the HS06 score of a server normalized to single core
- For most sites corepower is still HS06/core (Transition from HS06 to HS23 in April 2023)
- Comparison of corepower declared by sites in ATLAS-CRIC with *runtime* corepower based on HEPScore23, measured via the job submission infrastructure of the ALTAS experiment
- Analysis of corepower from different data sources (ATLAS-CRIC, BDII: GLUE1/GLUE2, APEL*)
 - Visible discrepancies between data sources
- Objective: Analysis of corepower

CPU models per year of release

Submission Infrastructure

Automated submission of HS23 via HammerCloud Infrastructure:

• PanDA, HammerCloud, Rucio, ActiveMQ, Elasticsearch, Grafana, Kibana...

Probing job slots

- Each site has servers with a variety of CPU models and number of cores (256, 128, 64...)
- We are running the benchmark injecting the HEP Suite script as a normal experiment job running inside the PILOT Apptainer
- We probe multi-core job slots (8 cores)

Declared corepower

- Corepower data for ATLAS is taken from ATLAS-CRIC
 - Essential metric to understand the computing capabilities based on the specific hardware
 - In ATLAS-CRIC each ATLAS site can have multiple Panda Queues (resources)
 - Challenge: Mapping between Panda Queues and ATLAS Sites
- Corepower reported by sites is the weighted average of different corepowers of given CPU models available at the site
 - Challenge: Find the correct weights per site using finished jobs (next slide)
- Compute the corepower of a site as weighted averages of the runtime HS23 values

Based on : link and internal communication

Declared corepower

- Corepower data for ATLAS is taken from ATLAS-CRIC
 - Essential metric to understand the computing capabilities based on the specific hardware
 - In ATLAS-CRIC each ATLAS site can have multiple Panda Queues (resources)
 - Challenge: Mapping between Panda Queues and ATLAS Sites
- Corepower reported by sites is the weighted average of different corepowers of given CPU models available at the site
 - Challenge: Find the correct weights per site using finished jobs (next slide)
- Compute the corepower of a site as weighted averages of the runtime HS23 values

PanDA Queue	.↓† State .↓†	type ↓†	Cloud↓↑	Tier↓↑	Final status ↓↑	core power ↓
🕝 🔓 🚯 pic_MareNostrum4	ACTIVE	production	ES	T1	ONLINE	27.18 27.18
C 🔓 🔓 IFIC_MareNostrum4	ACTIVE	production	ES	T2D	ONLINE	27.18 27.18
C 🔓 1 UAM_MareNostrum4	ACTIVE	production	ES	T2D	ONLINE	27.18 27.18
C 🔓 🔒 🚯 HPC2N	ACTIVE	unified	ND	T1	 online 	25.45 25.45
	ACTIVE	production	US	T2D	 online 	24.6 24.6
Praguelcg2_Barbora_MCORE	ACTIVE	production	DE	T2D	 online 	24.5 24.5
	ACTIVE	unified	ND	T2	 online 	21.7 21.7
🕼 🔓 🚯 SLAC	ACTIVE	production	US	T3D	 online 	20.05 20.05
🕼 🔓 🚯 ANALY_SLAC_GPU	ACTIVE	analysis	US	T3D	ONLINE	20 2
UNIGE-BAOBAB	ACTIVE	unified	ND	T2	1 online	19.98 19.98
🕼 🔓 🚯 CA-IAAS-T3	ACTIVE	production	CA	тз	 online 	19 19
Image: SWT2_GOOGLE_ARM	ACTIVE	unified	US	T2D	 online 	18.77 18.77
C 🔓 🔒 🚯 DCSC	ACTIVE	unified	ND	T1	 online 	18.07 18.07
C 🔓 1 INFN-CNAF_ARM	ACTIVE	unified	п	T1	 online 	17.9 17.9
🕼 🔓 🚯 UNI-FREIBURG_NHR	ACTIVE	unified	DE	T2D	 online 	16 1

- corepower_runtime per site:
 - For each CPU model on each site calculate the weight as:

$$w_{x} = \frac{\sum_{i} \text{walltime}_x \text{_core}_{i}}{\sum_{j} \sum_{k} \text{walltime}_x \text{_core}_{jk}}$$

• For each site calculate the weighted average (using available benchmarking CPU Models):

corepower_runtime_s =
$$\frac{\sum_{x} w_x \cdot \text{corepower_runtime}_x}{\sum_{x} w_x}$$

• Relative change:

$$Relative \ change = \frac{\text{corepower}_runtime_s}{\text{corepower}_declared} - 1$$

Site A: Corepower for different CPU Models

● CPU1 ● CPU2 ● CPU3 ● CPU4

- corepower_runtime per site:
 - For each CPU model on each site calculate the weight as:

$$w_{x} = \frac{\sum_{i} \text{walltime}_x \text{_core}_{i}}{\sum_{j} \sum_{k} \text{walltime}_x \text{_core}_{jk}}$$

• For each site calculate the weighted average (using available benchmarking CPU Models):

corepower_runtime_s =
$$\frac{\sum_{x} w_x \cdot \text{corepower_runtime}_x}{\sum_{x} w_x}$$

• Relative change:

 $Relative \ change = \frac{\text{corepower}_runtime_s}{\text{corepower}_declared} -$

Site A weights derived from walltime_x_core

- corepower_runtime per site:
 - For each CPU model on each site calculate the weight as:

$$w_{x} = \frac{\sum_{i} \text{walltime}_x \text{_core}_{i}}{\sum_{j} \sum_{k} \text{walltime}_x \text{_core}_{jk}}$$

• For each site calculate the weighted average (using available benchmarking CPU Models):

corepower_runtime_s =
$$\frac{\sum_{x} w_x \cdot \text{corepower_runtime}_x}{\sum_{x} w_x}$$

• Relative change:

 $Relative \ change = \frac{\text{corepower}_runtime_s}{\text{corepower}_declared} - \frac{1}{1}$

Site A weights derived from walltime_x_core

- corepower_runtime per site:
 - For each CPU model on each site calculate the weight as:

$$w_{x} = \frac{\sum_{i} \text{walltime}_x \text{_core}_{i}}{\sum_{j} \sum_{k} \text{walltime}_x \text{_core}_{jk}}$$

• For each site calculate the weighted average (using available benchmarking CPU Models):

corepower_runtime_s =
$$\frac{\sum_{x} w_x \cdot \text{corepower_runtime}_x}{\sum_{x} w_x}$$

• Relative change:

 $Relative \ change = \frac{\text{corepower_runtime}_{s}}{\text{corepower_declared}_{s}} -$

Results

Relative change for different ATLAS sites

Relative change for different ATLAS sites

Relative change for different ATLAS sites

Similar studies – similar results

- Similar studies have been presented in ATLAS and at CHEP
 - "A comparison of HEPSPEC benchmark performance on ATLAS Grid-Sites versus ideal conditions" (2022)
- Same type of discrepancies was found

A comparison of HEPSPEC benchmark performance on ATLAS Grid-Sites versus ideal conditions

Analysis of corepower values

- The corepower values from ATLAS-CRIC largely differ from runtime corepower for 35% of sites
- The corepower values from ATLAS-CRIC seem outdated
- It is worth to check whether those discrepancies are just a matter of lack of updates in ATLAS- CRIC from site admins, or does it occur also in other data sources, as BDII or APEL*
- We were able to collect conversion factors data from GLUE1 and GLUE2 and calculate corepower values from it

ype GLUE2BenchmarkValue

https://twiki.cern.ch/twiki/bin/view/LCG/DataNormalization#Data Normalization as of 25 09 2

Comparison between GLUE1 and GLUE2 values

How does it look comparing to ATLAS-CRIC values?

Comparison between CRIC, GLUE1 and GLUE2 values

- Missing matches between CRIC/GLUE1/GLUE2
- Visible discrepancies between different data sources
- Are these discrepancies known and acceptable?

How does this relate to HS23 runtime corepower?

Relative change of our measurements and different data sources

- ATLAS-CRIC corepower values are different comparing to the measured runtime corepower values
 - Should be fixed
- There are discrepancies beetween ATLAS-CRIC, GLUE1 and GLUE2 data sources
 - Should be fixed
- It would be beneficial to update entries in the different information systems and possibly unify them