

NNNLO zero-jettiness soft function

Andrey Pikelner | 14.10.2024, CERN

In collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

2111.13594, 2204.09459, 2401.05245, 2409.11042

KIT - The Research University in the Helmholtz Association

www.kit.edu

- I. Introduction and motivation
- 2. Ingredients of the final result
- 3. One-loop corrections with two soft emissions
- 4. Triple real soft emissions
- 5. Final result and applications

Introduction and motivation

Motivation

- Differential calculation require a good handle of IR divergences, many schemes exist at NNLO
- Slicing scheme seems to be more feasible at N3LO due to non existence of subtraction schemes

$$\sigma(\mathbf{O}) = \int_{0} \mathrm{d}\tau \, \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} = \int_{0}^{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} + \int_{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau}$$

 $^-~q_{\rm T}$ slicing scheme

- N-jettiness slicing scheme

[Catani,Grazzini'07] [Boughezal et al.'15][Gaunt et al.'15]

• SCET factorization theorem motivates us to consider jettiness as a convenient slicing variable for processes with jets in the final state

$$\lim_{\tau \to 0} \mathrm{d}\sigma(\mathrm{O}) = \mathrm{B}_{\tau} \otimes \mathrm{B}_{\tau} \otimes \mathrm{S}_{\tau} \otimes \mathrm{H}_{\tau} \otimes \mathrm{d}\sigma_{\mathrm{LO}}$$

Slicing scheme ingredients

- A phase space is split according to a slicing variable
- Possible to use any lower order calculation with additional jet in the $\tau > \tau_{cut}$ region

To apply at the NNNLO level:

- Existing NNLO+j calculations
- Many efficient NNLO subtraction schemes

Approximate cross section in the singular region from the factorisation formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \mathrm{H}_{\tau} \otimes \{\mathrm{B}_{\tau}\} \otimes \{\mathrm{J}_{\tau}\} \otimes \mathrm{S}_{\tau} \otimes \frac{\mathrm{d}\sigma_{0}}{\mathrm{d}\tau} + \mathscr{O}(\tau)$$

- Hard function H_{τ}
- Beam function B_{τ} , jet function J_{τ}
- -Soft function S_{τ}

RRR

Results

Intro 0000

Zero-jettiness measurement function

 $\hfill \ensuremath{\,\bullet\)}$ For two hard partons with momenta p_a and p_b jettiness is defined as follows

$$\mathcal{T}_{0} = \sum_{i=1}^{m} \min\left\{\frac{2p_{a}\cdot k_{i}}{Q}, \frac{2p_{b}\cdot k_{i}}{Q}\right\}, \quad k_{i} - are \text{ soft partons}$$

• It is possible to rescale $p_a=\frac{\sqrt{s_{ab}}}{2}n, p_b=\frac{\sqrt{s_{ab}}}{2}\bar{n}$ and go to the frame where n and \bar{n} are back-to-back

• Eikonal factors E(k, l) have uniform scaling: rescale integration momenta $q_i = q'_i \frac{Q\tau}{\sqrt{s_{ab}}}, q_i \in \{k, l\}$

$$\mathbf{S}(\tau) \sim \int \underbrace{\left[\mathbf{d}^{d}\mathbf{k}\right]^{m}}_{\text{ext}} \underbrace{\left[\mathbf{d}^{d}\mathbf{l}\right]^{n}}_{\text{loop}} \delta(\tau - \mathscr{T}_{0}) \mathbf{E}(\mathbf{k}, \mathbf{l}) \rightarrow \frac{1}{\tau} \left(\frac{\mathbf{s}_{ab}}{\mathbf{Q}^{2}\tau^{2}}\right)^{\varepsilon(m+n)} \int \left[\mathbf{d}^{d}\mathbf{k}'\right]^{m} \left[\mathbf{d}^{d}\mathbf{l}'\right]^{n} \delta\left(1 - \sum_{i=1}^{m} \min\{\alpha_{i}, \beta_{i}\}\right) \mathbf{E}(\mathbf{k}', \mathbf{l}')$$

Sudakov decomposition

$$\mathbf{k}_{i} = \frac{\alpha_{i}}{2}\mathbf{n} + \frac{\beta_{i}}{2}\bar{\mathbf{n}} + \mathbf{k}_{i,\perp}, \quad \mathbf{k}_{i} \cdot \mathbf{n} = \boldsymbol{\beta}_{i}, \quad \mathbf{k}_{i} \cdot \bar{\mathbf{n}} = \boldsymbol{\alpha}_{i}, \quad \mathbf{n} \cdot \bar{\mathbf{n}} = 2, \quad \mathbf{n}^{2} = \bar{\mathbf{n}}^{2} = 0$$

Intro	Details	RRV	RRR	Results
000●	000000	0000000	0000000000000000000000000000000000	0000000000

Ingredients of the final result

What is actually calculated?

 H, Z, W^{\pm}, \ldots

- The limit $\tau \rightarrow 0$ corresponds to the soft limit of the squared amplitude eikonal Feynman rules
- Need to include all possible real and virtual corrections to the amplitude squared

γ, Z,...

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region all kinds of divergencies are possible

From measurement function to configurations

- Minimum function is a problem for analytic calculation
- Definition which is more friendly for phase-space integration generates many configurations

$$\delta\left(1-\sum_{i=1}^{m}\min\{\alpha_{i},\beta_{i}\}\right)=\delta(1-\beta_{1}-\beta_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\alpha_{2}-\beta_{2})\cdots+\delta(1-\beta_{1}-\alpha_{2}-\ldots)\theta(\alpha_{1}-\beta_{1})\theta(\beta_{2}-\alpha_{2})\ldots$$

- Configurations can be mapped to the minimal set due to symmetries of Eikonal factor and $\delta(1 \{\alpha, \beta\})$
- RVV single configuration with $\delta(1-{
 m k}\cdot{
 m n})$, trivial phase-space integration

Details

κιτ ττρ

Symmetry relations between integrals

- Input expression organization in "diagram"-like structures

- Reduction of integrals to the minimal set of master integrals

All integrations are divergent at the boundaries only
 All integrals are linear reducible, GPLs only at all steps

RRR

- Once there is a way to subtract divergencies integrals calculated with HyperInt

2. Utilization of the modern multi-loop calculation techniques to reduce the problem to (1)

Differential equations for integrals at the expense of introducing new parameters

There are many highly non-trivial integrals, which we can calculate with direct integration

Calculation strategy

Results

Relative complexity of ingredients

RVV corrections

Two-loop corrections $r_{\rm S}^{(2)}$ to single gluon emission soft current are known exactly in ε [Duhr, Gehrmann'13] $- \underbrace{\begin{pmatrix} n \\ r_{\rm S} \\ k \\ \bar{n} \\ \end{pmatrix}}_{\bar{n}} = r_{\rm S}(k) \left(\begin{array}{c} n \\ - r_{\rm S} \\ - r_{\rm S} \\ \bar{n} \\ \bar{n} \\ \end{array} \right), \quad r_{\rm S}(k) = 1 + \sum_{l=1}^{\infty} A_{\rm s}^{l} \left[\frac{-(n \cdot \bar{n})}{2(k \cdot n)(k \cdot \bar{n})} \right]^{l\varepsilon} r_{\rm S}^{(1)}$

Two contributions from different hemisphere emissions need to be integrated, $S_g^{(3)} = s_{2,0} + s_{1,1} + s_{0,2}$

$$\mathbf{s}_{l,m} = \int \frac{\mathrm{d}^{d}\mathbf{k}}{(2\pi)^{d-1}} \delta^{+} \left(\mathbf{k}^{2}\right) \left[\delta(1-\mathbf{k}\cdot\mathbf{n})\theta(\mathbf{k}\cdot\bar{\mathbf{n}}-\mathbf{k}\cdot\mathbf{n}) + \delta(1-\mathbf{k}\cdot\bar{\mathbf{n}})\theta(\mathbf{k}\cdot\mathbf{n}-\mathbf{k}\cdot\bar{\mathbf{n}})\right] \mathbf{w}_{\mathrm{L,M}}(\mathbf{k})$$

14. 10. 2024 Andrey Pikelner: N3LO 0-jettiness soft function

8/41

- Linear propagators only
- Factorisation of k-dependent part of soft current

Results 0000000000

One-loop corrections with two soft emissions

One-loop corrections with double emission

- RRV squared amplitudes generated from scratch
- Results for one-loop soft current are known
- RRV result for gg final state were computed earlier
- Recalculation in the unified way including $q\bar{q}$ final state
- [Zhu'20][Czakon et al.'22] [Chen,Feng,Jia,Liue'22] [Baranowski et al.'24]

Multi-loop calculations inspired approach

- Reduction to the minimal set of master integrals with loop and phase-space integration
- Differential equations from IBP reduction parameter to differentiate is needed

Intro	Details	RRV	RRR	Results
0000	000000	○●○○○○○	0000000000000000000000000000000000	000000000

Modified reverse unitarity to deal with θ -integrals

• In dimensional regularisation system of IBP equation can be constructed by differentiation under integral sign

$$\int d^{d}l \frac{\partial}{\partial l_{\mu}} \Big[v_{\mu} \cdot f(\{l\}) \Big], \qquad \frac{\partial}{\partial k \cdot \bar{n}} \theta(k \cdot \bar{n} - k \cdot n) = \delta(k \cdot \bar{n} - k \cdot n)$$

• IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

$$\frac{\theta(\mathbf{k}\cdot\bar{\mathbf{n}}-\mathbf{k}\cdot\mathbf{n})}{(\mathbf{k}\cdot\bar{\mathbf{n}})^{\mathbf{a}}(\mathbf{k}\cdot\mathbf{n})^{\mathbf{b}}}\rightarrow\frac{\delta(\mathbf{k}\cdot\bar{\mathbf{n}}-\mathbf{k}\cdot\mathbf{n})}{(\mathbf{k}\cdot\bar{\mathbf{n}})^{\mathbf{a}}(\mathbf{k}\cdot\mathbf{n})^{\mathbf{b}}}$$

 $- \operatorname{RRR} \underbrace{\theta \theta}_{\operatorname{Level 3}} \rightarrow \underbrace{\delta \theta \theta + \theta \delta \theta + \theta \theta \delta}_{\operatorname{Level 2}} \rightarrow \underbrace{\delta \delta \theta + \delta \theta \delta + \theta \delta \delta}_{\operatorname{Level 1}} \rightarrow \underbrace{\delta \delta \delta}_{\operatorname{Level 0}}$ $- \operatorname{RRV} \underbrace{\theta \theta}_{\operatorname{Level 2}} \rightarrow \underbrace{\delta \theta + \theta \delta}_{\operatorname{Level 1}} \rightarrow \underbrace{\delta \delta}_{\operatorname{Level 0}}$ $\xrightarrow{\text{Details}}_{\operatorname{Decoso}} \xrightarrow{\text{RRV}}_{\operatorname{Decoso}} \xrightarrow{\text{RRR}}_{\operatorname{Decoso}}$

.

RRV master integrals calculation

• Number of MIs after IBP reduction of both configurations in RRV case

δδ	$\delta\theta + \theta\delta$	$\theta \theta$
8	36	15

- $\hfill \ensuremath{\,\bullet\)}$ Direct integration possible, except pentagon and box with $a_3=0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

- Additional parameter z is not needed utilize variables from integral representation
- To recover integrals of interest I instead of taking limit $I = \lim_{z \to z_0} J(z)$ we integrate $I = \int dz J(z)$

Intro	Details	RRV	RRR	Results
0000	000000	000●000	0000000000000000000000000000000000	00000000

RRV master integrals from differential equations

• For $\delta\delta$ integrals we introduce auxiliary parameter x and solve DE system $\partial_x J(x) = M(\epsilon, x)J(x)$

$$I_{\delta\delta} = \int d(\mathbf{k}_1 \cdot \mathbf{k}_2) f(\mathbf{k}_1 \cdot \mathbf{k}_2) = \int_0^1 d\mathbf{x} \int d(\mathbf{k}_1 \cdot \mathbf{k}_2) \,\delta(\mathbf{k}_1 \cdot \mathbf{k}_2 - \frac{\mathbf{x}}{2}) f(\mathbf{k}_1 \cdot \mathbf{k}_2) = \int_0^1 J(\mathbf{x}) d\mathbf{x}$$

• For $\delta\theta$ and $\theta\delta$ we use integral representation for θ -function and solve DE system $\partial_z J(z) = M(\varepsilon, z)J(z)$

$$\theta(\mathbf{b}-\mathbf{a}) = \int_0^1 \mathbf{b}\delta(\mathbf{z}\mathbf{b}-\mathbf{a})d\mathbf{z}, \quad \mathbf{I}_{\delta\theta} = \int_0^1 \mathbf{J}(\mathbf{z})d\mathbf{z}$$

• For $\theta\theta$ integrals PDE system in two variables z_1, z_2 , no IBP reduction with θ -functions needed

$$I_{\theta\theta} = \int_0^1 dz_1 \int_0^1 dz_2 J(z_1, z_2)$$

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000000000000000000000000000000	0000000000

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \rightarrow \varepsilon A$ [Henn'13]
- Straightforward solution for integrals in canonical basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z) = z^{a_1+b_1\varepsilon} (c_1 + \mathcal{O}(z)) + z^{a_2+b_2\varepsilon} (c_2 + \mathcal{O}(z)) + \dots$$

• Construction of subtraction terms to remove endpoint singularities in the final integration

0000000

$$\int_{0}^{1} \mathbf{J}(\mathbf{z}) d\mathbf{z} = \int_{0}^{1} \underbrace{\left[\mathbf{J}(\mathbf{z}) - \mathbf{z}^{\mathbf{a}_{1} + \mathbf{b}_{1}\varepsilon} \mathbf{j}_{0}(\mathbf{z}) - (1 - \mathbf{z})^{\mathbf{a}_{k} + \mathbf{b}_{k}\varepsilon} \mathbf{j}_{1}(\mathbf{z}) \right]}_{\varepsilon - \text{expanded}} d\mathbf{z} + \int_{0}^{1} \underbrace{\left(\mathbf{z}^{\mathbf{a}_{1} + \mathbf{b}_{1}\varepsilon} \mathbf{j}_{0}(\mathbf{z}) - (1 - \mathbf{z})^{\mathbf{a}_{k} + \mathbf{b}_{k}\varepsilon} \mathbf{j}_{1}(\mathbf{z}) \right)}_{\varepsilon - \text{exact}} d\mathbf{z}$$

Summary: real-real-virtual contributions

- IBP reduction of integrals with θ -functions and loop integration can be efficiently implemented
- Differential equations for auxiliary integrals can be constructed and solved analytically
- Auxiliary integrals are simplified in the limit, and all required boundary constants can be calculated

Intro	Details	RRV	RRR	Results
0000	000000	000000●	0000000000000000000000000000000000	00000000

Triple real soft emissions

Triple real emissions

Recalculated input for eikonal factors with partial fractioning and topology mapping

- $ggg = ggg + gc\bar{c}$, coincides with the known expression in physical gauge
- $\hfill gq\bar{q}$ in agreement with

Same hemisphere

 $\delta(\tau-\beta_1-\beta_2-{\beta_3})$

$\hfill\blacksquare$ Same hemisphere result for ggg final state is known

Details

[Catani,Colferai,Torrini'19]

[Del Duca, Duhr, Haindl, Liu'23]

Different hemispheres

 $\delta(\tau-\beta_1-\beta_2-\pmb{\alpha_3})$

RRR

[Baranowski et al. '22]

Results
000000000

Divergences unregulated dimensionally

- Same hemisphere emission of k₁, k₂ partons
- Integration in the region $\underbrace{\beta_1}_{\sim\lambda} << \underbrace{\alpha_1, \beta_2}_{\sim 1} << \underbrace{\alpha_2}_{\sim 1/\lambda}$

• Both are close to the \vec{n} direction $\cos\theta_1\sim\cos\theta_2\sim 1+\mathcal{O}(\lambda)$

• And large energies difference $\omega_1 \sim 1 << \omega_2 \sim 1/\lambda$

Possible cases for integrals in the potentially unregulated region

Interior	Integrals in the region with scaleless integrations				
Interview	grals with zero sum of tw	vo contributions from $ heta_1 > heta_2$ a	and $\theta_1 < \theta_2$ parts	safe	
Rar	e cases of integrals with	non-trivial region contribution	Additional regulator needed		
Intro 0000	Details 000000	RRV 0000000	RRR 00●00000000000000000000000000000000	Results 00000000	

Additional regulator in action

• Example region k_1, k_2 : $\beta_1 \sim \lambda$ and $\alpha_2 \sim 1/\lambda$ change of variables $\beta_1 = \xi_1 \alpha_1$ and $\alpha_2 = \beta_2/\xi_2$

• Our choice for regulator to modify integration measure for each $dk_i \theta(a_i - b_i) \rightarrow dk_i \theta(a_i - b_i) b_i^{\nu}$

$$\int \frac{\mathrm{d}\alpha_1 \mathrm{d}\beta_1 \mathrm{d}\alpha_2 \mathrm{d}\beta_2 (\beta_1 \beta_2)^{\nu}}{(\alpha_1 \beta_1 \alpha_2 \beta_2)^{e}} \to \begin{cases} \int \mathrm{d}\alpha_1 \mathrm{d}\beta_2 \mathrm{dx} \mathrm{d}\xi_2 \frac{(\alpha_1 \beta_2)^{1-2e+\nu}}{\xi_2^{1-\nu_{\mathbf{x}}e-\nu}} &, \xi_1 < \xi_2, \xi_1 = \mathbf{x}\xi_2 \\ \int \mathrm{d}\alpha_1 \mathrm{d}\beta_2 \mathrm{dx} \mathrm{d}\xi_1 \frac{(\alpha_1 \beta_2)^{1-2e+\nu}}{\xi_1^{1-\nu_{\mathbf{x}}^{2-e}}} &, \xi_2 < \xi_1, \xi_2 = \mathbf{x}\xi_1 \end{cases}$$

- Additional complications due to a new regulator
 - More complicated reduction due to an additional parameter in the problem
 - Master integrals calculation is more difficult due to the need to consider the double limit $\varepsilon, \nu \rightarrow 0$

Intro	Details	RRV	RRR	Results
0000	000000	0000000	०००●०००००००००००००	000000000

Reduction of ν -regulated integrals

Approaches to ν -dependent IBP reduction problem (IBP with ν is available)

- 1. Direct ν -dependent reduction with additional variable
 - X Time consuming and not flexible especially if basis change needed
 - ✓ Minimal set of master integrals and full ν -dependent solution
- 2. Filtering remove all equations with potentially divergent integrals from the IBP system
 - ✓ Very fast compared to the full ν -dependent reduction
 - X Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system
- 3. Expansion rewrite IBP system as a new system for $1/\nu$ expansion coefficients of integrals
 - ✓ Fast reduction with control of divergencies
 - X Additional divergent parts of integrals from the intermediate steps of IBP reduction can appear

Intro Details RRV 0000 000000 000000	RRR 0000⊕000000000000000000000000000000
--	--

Results

Importance of a good master integrals basis

- From the analysis of possible divergencies we consider ansatz $J_a = \sum_{k=k_0}^{\infty} J_a^{(k)} v^k$ with $k_0 = -1$
- ${\ensuremath{\,^\circ}}$ Solution of the IBP reduction problem for regular- ν integrals I_a has the form

$$I_{\rm a}^{(0)} = R_{\rm ab} \, J_{\rm b}^{(0)} + D_{\rm ab} \, \tilde{J}_{\rm b}^{(-1)}$$

- We require a "good" basis to fulfill the following conditions:
 - Coefficients in front of master integrals do not contain $1/\nu$ poles
 - Each master integral is a member of only one set $J_{\rm b}$ or $\tilde{J}_{\rm b}$
 - Candidates for the set $J_{\rm b}$ can be found from the $\nu=0$ reduction
- Regular integrals $J_{b}^{(0)}$ are calculated in a standard way, calculation of needed divergent parts $\tilde{J}_{b}^{(-1)}$ is simplified, since only specific regions contribute

Intro	Details	RRV	RRR	Results
0000	000000	0000000	०००००●००००००००००००	000000000

DE for RRR integrals with auxiliary mass

- Integrals for both nnn and $nn\bar{n}$ configurations with denominator $1/k_{123}^2$ are difficult to calculate
- Since integrals are single scale, auxiliary parameter is needed to construct the system of DE $I \rightarrow J(m^2)$
- We modify the most complicated propagator $\frac{1}{(k_1+k_2+k_3)^2} \rightarrow \frac{1}{(k_1+k_2+k_3)^2+m^2}$
- Calculation of boundary conditions is possible in the limit $m^2 \rightarrow \infty$, but still very difficult
- Massless integrals I are obtained from the solution for $J(m^2)$ in the limit $m^2 \rightarrow 0$, which is not trivial

Difficulties of the chosen strategy

- ${\color{black}\bullet}$ Both points $m^2 \to 0$ and $m^2 \to \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator is only possible numerically

Details of the DE solution

- A much larger DE system, ~ 650 equations are needed for $nn\bar{n}$ configuration compared to ~ 150 for nnn
- ${\hfill}$ Need to calculate all contributing regions into boundary conditions in the $m^2 \to \infty$ limit

- For each large parameter $\alpha_i \sim m^2$ we remove $\theta \implies$ additional IBP reduction of boundary conditions integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]

From boundaries at $m^2 \rightarrow \infty$ to $m^2 \rightarrow 0$ solution

- Sum of all regions at $m^2 \to \infty$ to get high precision numerical solution at the first regular point R_{∞}
- High precision numerical solution of the DE between seqence of regular point $R_{\infty} \rightarrow R_1 \dots R_n \rightarrow R_0$
- $\bullet\,$ Final result Taylor branch of the generalized $m^2 \rightarrow 0$ expansion gives the required result

Intro	Details	RRV	RRR	Results
0000	000000	0000000	00000000●00000000000	000000

Nice features of the DE and its solution

- Numerical DE solution at finite m^2
 - Independent numerical checks at finite m^2
- $\bullet\,$ Local Fuchsian form of the DE near singular points $m^2 \to 0$ and $m^2 \to \infty$
 - Matrix solution and generalized power series expansions
 - Minimal set of independent boundary constants to calculate
- Self-consistency checks of the DE solution and boundaries
 - Unphysical branches disappear after boundaries substitution
 - On the real axis $m^2 \in (0,\infty)$ all integrals have zero imaginary parts
- Relations between specific branch expansion coefficients and IBP reduction of boundary constants
- Massless integrals we are interested in are extracted from the specific branch of $m^2 \rightarrow 0$ DE solution

Boundaries at $m^2 \rightarrow \infty$ and series expansions

• Local Fuchsian form of the transformed DE with $\vec{f} = T\vec{g}$ and $y = y(m^2)$

$$\frac{\partial \vec{g}}{\partial y} = \left[\frac{A_0}{y} + \sum_i \frac{A_i}{P_i(y)}\right] \vec{g}, \quad P_i(0) \neq 0$$

• Leading order matrix solution $\vec{g}(y) = U(y)\vec{B}$ directly read from the Fuchsian DE: $U(y \rightarrow 0) \sim y^{A_0}$

Specific branch y^{λ} expansions, $\lambda = b\varepsilon$

 $J_{1}^{(\lambda)} = y^{a_{1}+\lambda} \left(c_{1,0}^{\lambda} + c_{1,1}^{\lambda} y^{1} + c_{1,2}^{\lambda} y^{2} + \dots \right)$

$$\vdots \\ J_n^{(\lambda)} = y^{a_n + \lambda} \Big(c_{n,0}^{\lambda} + c_{n,1}^{\lambda} y^1 + c_{n,2}^{\lambda} y^2 + \dots \Big)$$

- $\hfill We are interested in <math display="inline">y=m^2$ and $y=1/m^2$
- Minimal vector \vec{B} is a subset of $\bigcup_{\lambda} \{c^{\lambda}_{1,0},\ldots,c^{\lambda}_{n,0}\}$
- All $c_{i,j}^{\lambda}$ with j > 0 through subset of $c_{i,0}^{\lambda}$
- Reducible integrals expansion coefficients reduction

Intro	Details	RRV	RRR	Results
0000	000000	0000000	○○○○○○○○○●○○○○○○○○	000000000

IBP reduction of boundary constants at $m^2 \rightarrow \infty$

Local Fuchsian form \Rightarrow Matrix series solution \Rightarrow IBP for constants

- I. Available IBP reduction tables for massive integrals ${\rm X}_i = \sum_k {\rm R}_{i,k}(m^2) J_k$
- 2. Deep enough $1/m^2$ expansions for master integrals J_k due to possible poles/zeroes in $R_{i,k}(m^2)$
- 3. Substitution of expanded MIs and unknown integrals $X_i = \sum_{\lambda} X_i^{(\lambda)}$ to IBP tables provides relations between leading expansion coefficients $x_{i,0}^{\lambda}$ and $c_{i,0}^{\lambda}$ valid for each branch $(m^2)^{\lambda}$ independently

$$X_i^{(\lambda)} \!=\! (m^2)^{a_1+\lambda} \! \left(x_{i,0}^{\lambda} \!+\! \frac{x_{i,1}^{\lambda}}{m^2} \!+\! \frac{x_{i,2}^{\lambda}}{m^4} \!+\! \dots \right)$$

- In each region additional boundary constants calculated and checked against reduction prediction
- Due to huge difference in calculation complexity possible to select simpler/less divergent integrals

Boundary integrals simplification

• Main difficulty comes from the dependence of $k_{123}^2 + m^2$ on three angles, but in specific regions simplifications occur

$$k_{123}^2 + m^2 = \sum_{i \neq j} \alpha_i \beta_j - \sqrt{\alpha_i \beta_i \alpha_j \beta_j} \cos\left(k_{i,\perp}, k_{j,\perp}\right) + m^2$$

• Region $\left(m^2\right)^{-\varepsilon}$, single large parameter e.g. $a_1 \sim m^2$

 $\mathbf{k}_{123}^2 + \mathbf{m}^2 \rightarrow \pmb{\alpha}_1 \left(\beta_2 + \beta_3 \right) + \mathbf{m}^2$

• Region $(m^2)^{-2\epsilon}$, pair of large parameters e.g. $\alpha_1 \sim \alpha_2 \sim m^2$, angle dependence remains since $k_1 \cdot k_2 \sim m^2$

$$\mathbf{k}_{123}^2 + \mathbf{m}^2 \rightarrow \mathbf{k}_{12} + \left(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 \right) \boldsymbol{\beta}_3 + \mathbf{m}^2$$

0000 000000 0000000 0000000 0000000 0000	Intro	Details	RRV	RRR	Results
	0000	000000	0000000	0000000000●0000000	000000000

Boundary constants in the region $(m^2)^{-\varepsilon}$

- Dependence on angles disappears in $k_{123}^2 + m^2 \rightarrow \alpha_i (\beta_j + \beta_k) + m^2$ in the $m^2 \rightarrow \infty$ limit
- Only non-trivial scalar product for e.g. $\alpha_1 \sim m^2$ is $(k_2 \cdot k_3)$ and $\theta(\alpha_1 \beta_1) \rightarrow 1$
- Integration over the relative angle between soft partons in terms of $_2F_1$, function of argument dependent on $r_i = \frac{\beta_i}{\alpha_i} \theta(\alpha_i \beta_i) + \frac{\alpha_i}{\beta_i} \theta(\beta_i \alpha_i)$
- $\hfill \ensuremath{\: \bullet}$ For same-hemisphere emissions we split integration region into $r_i > r_j$ and $r_i < r_j$

Boundary constants in the region $(m^2)^{-2\varepsilon}$

- For two large parameters, say $a_1 \sim a_2 \sim m^2$ integrations become unconstrained $\theta(a_1 \beta_1)\theta(a_2 \beta_2) \rightarrow 1$
- Turn boundary integrals into ordinary PS integral J using $1=\int dq \delta(q-k_1-k_2)$ insertion

$$\begin{split} \mathbf{L}_{-2\varepsilon} &= \int \frac{\mathrm{d}q\mathrm{d}k_{3}\delta(1-\beta_{q}-\beta_{3})\mathscr{C}_{3}}{q^{2}+\alpha_{q}\beta_{3}+\mathbf{m}^{2}} \times \frac{1}{\prod_{i}\mathrm{D}_{i}\left(\alpha_{q},\beta_{q},q^{2},\alpha_{3},\beta_{3}\right)} \times \mathbf{J}_{a_{1}...a_{6}}\left(\beta_{3},\alpha_{q},\beta_{q},q^{2}\right) \\ \mathbf{J}_{a_{1}...a_{6}} &= \int \frac{[\mathrm{d}k_{1}][\mathrm{d}k_{2}]\delta\left(\mathbf{k}_{1}^{2}\right)\delta\left(\mathbf{k}_{2}^{2}\right)\delta^{(\mathrm{d})}(\mathbf{q}-\mathbf{k}_{1}-\mathbf{k}_{2})}{(\mathbf{k}_{1}\cdot\mathbf{n})^{a_{1}}\left(\mathbf{k}_{2}\cdot\mathbf{n}\right)^{a_{2}}\left(\mathbf{k}_{1}\cdot\bar{\mathbf{n}}\right)^{a_{3}}\left(\mathbf{k}_{2}\cdot\bar{\mathbf{n}}\right)^{a_{4}}\left(\mathbf{k}_{1}\cdot\mathbf{n}+\beta_{3}\right)^{a_{5}}\left(\mathbf{k}_{2}\cdot\mathbf{n}+\beta_{3}\right)^{a_{6}}} \end{split}$$

• IBP reduction possible, nontrivial part in the angular integral $\Omega_n = \int \frac{d\Omega_k}{(k \cdot v_1)^{a_1} (k \cdot v_2)^{a_2} ... (k \cdot v_n)^{a_n}}$

- After partial fractioning only Ω_n with n=1,2 and maximum single $v_i^2\neq 0$ and all other $v_i^2=0$
- Trivial integration over large parameter $\alpha_q \sim m^2$, linear propagators simplified e.g. $\alpha_1 + \alpha_3 \rightarrow \alpha_1$

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000000000000000000000000000000	000000000
Intro	Details	RRV	RRR	Results
0000	000000	0000000	○○○○○○○○○○○○○○○○○○○○	000000000

Direct integration of MIs and boundary constants

- We have calculated ~ 130 integrals without $1/k_{123}^2$ denominator and ~ 100 boundary conditions by direct integration with HyperInt [Panzer'15]
- Summary of used techniques
- I. Change variables to satisfy all constraints from δ and θ functions
- 2. Perform as many integrations as possible in terms of $_2F_1$ and F_1 functions with known transformation properties
- 3. Perform remaining integrations in terms of ${}_{\rm p}{\rm F}_{\rm q}$ functions if possible
- 4. For the final integral representation with minimal number of integrations and minimal set of divergencies construct subtraction terms
- 5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
- 6. Subtraction terms are integrated in the same way

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000000000000000000000000000000	000000000

Numerical checks of calculated integrals

- For integrals without $1/k_{123}^2$ denominator use parametrisation similar to one used for analytical calculation
 - Straightforward hyper-cube parametrisation due to simple angle dependence of $1/(k_i \cdot k_j)$ denominators only
 - Sector decomposition with remapping $x \to 1$ divergencies to $x' \to 0$ with <code>pySecDec</code> or <code>FIESTA</code>
- For integrals with $1/k_{123}^2$ at $m^2 = 0$ we avoid the need to use angles and construct Mellin-Barnes representation
 - Repeated application of $(A+B)^{\lambda} \rightarrow \int A^{\lambda_1} B^{\lambda_2}$, important to have A,B>0 at each step
 - Angle integration simplified until can be integrated in terms of gamma functions only
 - Analytical continuation with MBresolve and numerical integration with MB
- Integrals with $1/k_{123}^2$ at finite m^2 , which are less divergent due to mass regularization
 - Careful preselection of less divergent integrals using available reduction to prevent SD from complexity explosion
 - For finite integrals or integrals with factorized divergencies direct integration with subtraction
 - Midpoint splitting for $x_i \rightarrow 1$ divergencies and sector decomposition for overlapping divergencies using FIESTA

Intro	Details	RRV	RRR	Results
0000	000000	0000000	0000000000000000000000000000000000	000000000
0000	000000	0000000	000000000000000000000000000000000000000	0000000000

Mellin-Barnes representation for angular integral

• First we convert complicated denominator $1/k_{123}^2$ into product of scalar products

$$\frac{1}{(k_1 \cdot k_2 + k_2 \cdot k_3 + k_3 \cdot k_1)^{\lambda}} = \frac{1}{\Gamma(\lambda)} \int_{c-i\infty}^{c+i\infty} \frac{dz_1 dz_2}{(2\pi i)^2} \frac{\Gamma(\lambda + z_1 + z_2)\Gamma(-z_1)\Gamma(-z_2)}{(k_1 \cdot k_2)^{z_1 + z_2 + \lambda}(k_2 \cdot k_3)^{-z_1}(k_3 \cdot k_1)^{-z_2}}$$

Introduce unit length vectors to make standard angular integral structure transparent

$$\frac{1}{(\mathbf{k}_{i}\cdot\mathbf{k}_{j})^{\lambda}} = \frac{1}{\Gamma(\lambda)} \int_{c-i\infty}^{c+i\infty} \frac{dz}{2\pi i} \Gamma(-z) \Gamma(\lambda+z) \frac{2^{-z} \left(\sqrt{\alpha_{i}\beta_{j}} - \sqrt{\alpha_{j}\beta_{i}}\right)^{2z}}{\left(\alpha_{i}\beta_{i}\alpha_{j}\beta_{j}\right)^{z/2+\lambda/2}} \frac{1}{\left(\rho_{i}\cdot\rho_{j}\right)^{z+\lambda}}, \quad \rho_{i} = \left(1, \frac{\vec{k}_{i,\perp}}{|\vec{k}_{i,\perp}|}\right)$$

Final angles integration can be done in closed form well suited for subsequent MB integrations

$$\int \frac{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2 \mathrm{d}\Omega_3}{(\rho_1 \cdot \rho_2)^{\lambda_1} (\rho_2 \cdot \rho_3)^{\lambda_2} (\rho_3 \cdot \rho_1)^{\lambda_3}} = \frac{\Gamma^3 (1-\varepsilon)}{\pi^{3/2} 2^{6\varepsilon+\lambda} \Gamma(1-2\varepsilon)} \frac{\Gamma(1-2\varepsilon-\lambda) \prod_{i=1}^3 \Gamma\left(\frac{1}{2}-\varepsilon-\lambda_i\right)}{\prod_{i=1}^3 \prod_{j=1}^{i-1} \Gamma\left(1-2\varepsilon-\lambda_i-\lambda_j\right)}$$

Karlsruhe Institute of Technology

Finite mass integrals

Use angles between transverse momenta as parameters

$$(\mathbf{k}_{i} \cdot \mathbf{k}_{j}) = 1/2 \left(\sqrt{\alpha_{i}\beta_{j}} - \sqrt{\alpha_{j}\beta_{i}} \right)^{2} + \sqrt{\alpha_{i}\beta_{i}\alpha_{j}\beta_{j}}\rho_{ij}$$
$$\rho_{12} = (1 - \cos\theta_{1}) \quad \rho_{13} = (1 - \cos\theta_{2}) \quad \rho_{23} = (1 - \cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2}\cos\theta_{3})$$

Integral divergences analysis

- $x_i \in [0,1] \rightarrow z_i \in [0,\infty)$, div: $\{z\} \rightarrow 0$ or $\{z\} \rightarrow \infty$
- $\hfill Possible subsets <math display="inline">Z_0$ and Z_∞ of $\{z_1,\ldots,z_n\}$
- Do rescalings $z_i \rightarrow \lambda z_i, z_i \in Z_0$ and $z_i \rightarrow 1/\lambda z_i, z_i \in Z_\infty$
- Divergent if for $\int \frac{dz}{z^a} \prod P(z)^b \rightarrow \lambda^w \int \frac{dz}{z^a} \prod P(z)^b$

$$\mathbf{w} + \dim \left(\mathbf{Z}_0 \right) - \dim \left(\mathbf{Z}_\infty \right) \leq 0$$

• For all integrals with $Z_\infty \neq \emptyset$ split at point 0

$$\int\limits_{0}^{\infty} dz f(z) = p \int\limits_{0}^{\infty} \frac{dz}{(1+z)^2} f\Big(\frac{pz}{1+z}\Big) + p \int\limits_{0}^{\infty} \frac{dz}{z^2} f\Big(\frac{p(1+z)}{z}\Big)$$

• Select less divergent integrals determined by all \mathbf{Z}_0 sets

0000 000000000000000000000000000000000	Intro	Details	RRV	RRR	Results
	0000	000000	0000000	0000000000000000000000000000000	00000000

Summary: triple-real contributions

- Additional regulator is required for correct IBP reduction
- Efficient techniques are developed to decrease the complexity of the reduction with additional regulator
- DE for auxiliary m^2 dependent integrals with $1/k_{122}^2$ propagator makes calculation possible
- DE in addition to numerical solution also provides many important consistency checks and relations
- Integrals are highly non-trivial for numerical checks

Final result and applications

Laplace space and UV renormalization

• Final unrenormalized result for the NNNLO soft function is a sum over configurations C

$$S_{\tau,B}^{\rm NNNLO} = \sum_{C} S_{\tau,B}^{\rm RVV,C} + \sum_{C} S_{\tau,B}^{\rm RRV,C} + \sum_{C} S_{\tau,B}^{\rm RRR,C}$$

 $\hfill \ensuremath{\,^\circ}$ For the renormalization we need the NNLO result expanded to higher orders in $\ensuremath{\varepsilon}$

$$\mathbf{S}_{\tau,\mathbf{B}} = \delta(\tau) + \frac{\mathbf{a}_{\mathbf{s},\mathbf{B}}}{\tau} \left(\frac{\mathbf{s}_{\mathbf{ab}}}{\mathbf{Q}^2 \tau^2}\right)^{\varepsilon} \mathbf{S}_1 + \frac{\mathbf{a}_{\mathbf{s},\mathbf{B}}^2}{\tau} \left(\frac{\mathbf{s}_{\mathbf{ab}}}{\mathbf{Q}^2 \tau^2}\right)^{2\varepsilon} \mathbf{S}_2 + \frac{\mathbf{a}_{\mathbf{s},\mathbf{B}}^3}{\tau} \left(\frac{\mathbf{s}_{\mathbf{ab}}}{\mathbf{Q}^2 \tau^2}\right)^{3\varepsilon} \mathbf{S}_3 + \mathcal{O}\left(\mathbf{a}_{\mathbf{s},\mathbf{B}}^4\right)$$

• Do strong coupling renormalization $a_{s,B} = \mu^{2\epsilon} Z_{a_s} a_s(\mu)$ and do Laplace transform with parameter $\bar{u} = u e^{\gamma_E}$

$$\tilde{S}_{B}\left(a_{s}(\mu),L_{S}\right) = \int_{0}^{\infty} d\tau e^{-\tau u} S_{\tau,B}\left(a_{s,B} \rightarrow \mu^{2\varepsilon} Z_{a_{s}}a_{s}(\mu)\right), \quad L_{S} = \ln\left(\mu \bar{u} \frac{\sqrt{s_{ab}}}{Q}\right)$$

 \blacksquare Convenient to consider ${\rm \tilde{S}}_{\rm B}$ because the renormalization in Laplace space is multiplicative

Details

Results

[Baranowski'20]

Renormalization and checks from RG equation

 $\hfill Multiplicative renormalization in the Laplace space with <math display="inline">L_S$ dependent renormalization constant $Z_s(a_s,L_S)$

$$\tilde{S}(a_{s},L_{S}) = Z_{s}(a_{s},L_{S})\tilde{S}_{B}(a_{s},L_{S}) = \mathcal{O}\left(\varepsilon^{0}\right)$$

 $\left(\frac{\partial}{\partial L_{s}} + \beta(a_{s})\frac{\partial}{\partial a_{s}}\right)\ln Z_{s}(a_{s}, L_{s}) = \Gamma_{s}(a_{s}, L_{s}) = -4\gamma_{cusp}(a_{s})L_{s} - 2\gamma_{s}(a_{s})$

 ${\ensuremath{\,^{\circ}}}\xspace$ Z_{s} determined by the pole part of \tilde{S}_{B} satisfies RG equation

- Possible to make prediction for the NNNLO pole part of \tilde{S}_{B} and therefore for $S_{\tau B}$ from the NNLO result
- Final form of the renormalized NNNLO soft function can be split into constant and $L_{
 m S}$ dependent parts
- $ln(\tilde{S}(a_{s},L_{S})) = \sum_{i=1}^{\infty} \sum_{j=0}^{2i} C_{ij} a_{s}^{i} L_{S}^{j} = ln(\tilde{S}) + \sum_{i=1}^{\infty} \sum_{j=1}^{2i} C_{ij} a_{s}^{i} L_{S}^{j}, \quad \tilde{S} = \tilde{S}(a_{s},0)$

- $L_{S} = ln \left(\mu \bar{u} \frac{\sqrt{s_{ab}}}{Q} \right)$
- $\,\mu$ dependence in $\mathrm{a_s}(\mu)$ and $\mathrm{L_S}$
- $\Gamma_{\!\rm s}$ is finite
- Known cusp an.dim $\gamma_{
 m cusp}$
- Known non-cusp an.dim $\gamma_{\rm s}$

Result for NNNLO zero-jettiness soft function

Eikonal line representation dependence completely factorizes at NNNLO due to Casimir scaling

$$\begin{split} \frac{\ln\left(\tilde{S}\right)}{C_{R}} = & -a_{s}\pi^{2} + a_{s}^{2} \left[n_{f}T_{F} \left(\frac{80}{81} + \frac{154\pi^{2}}{27} - \frac{104\zeta_{3}}{9} \right) - C_{A} \left(\frac{2140}{80} + \frac{871\pi^{2}}{54} - \frac{286\zeta_{3}}{9} - \frac{14\pi^{4}}{15} \right) \right] \\ & + a_{s}^{3} \left[n_{f}^{2}T_{F}^{2} \left(\frac{265408}{6561} - \frac{400\pi^{2}}{243} - \frac{51904\zeta_{3}}{243} + \frac{328\pi^{4}}{1215} \right) + n_{f}T_{F} \left(C_{F}X_{FF} + C_{A}X_{FA} \right) + C_{A}^{2}X_{AA} \right] + \mathcal{O}\left(a_{s}^{4} \right) \right] \end{split}$$

• With $a_s = \frac{\alpha_s}{4\pi}$ and new coefficients calculated numerically with high precision

 $\mathbf{X}_{\rm FF} = 68.94258498 \qquad \qquad \mathbf{X}_{\rm FA} = 839.72385238 \qquad \qquad \mathbf{X}_{\rm AA} = -753.77578727$

• Soft function constants in $n_f = 5$ QCD required for resummed predictions $(q: C_R \rightarrow C_F)$ and $(g: C_R \rightarrow C_A)$

$$c_3^{S,q} = -1369.575849$$
 $c_3^{S,g} = -3541.982541$

Intro Details RRV RRR Re 0000 000000000000000000000000000	esults
--	--------

Singular region cross section from MC simulation

- Fit in the region, where NNLO MC predictions and approximate factorization prediction overlap
- From the condition $R(\tau) + \bar{R}(\tau) = 1$ and all C_i, G_{ij} except C_3 known

$$R(\tau) = \left(1 + \sum_{k=1}^{\infty} C_k \left(\frac{\alpha_s}{2\pi}\right)^k\right) \exp\left[\sum_{i=1}^{\infty} \sum_{j=1}^{i+1} G_{ij} \left(\frac{\alpha_s}{2\pi}\right)^i \ln^j \frac{1}{\tau}\right]$$

 $\hfill Missing \, C_3$ in the parametrisation of dijet region for NNLO Thrust

[Monni,Gehrmann,Luisoni'11]

		$C_3 = -1050$	$\pm 180 \pm 500$	
Intro	Details	RRV 0000000	RRR	Results
0000	000000		0000000000000000000000000000000000	0000●00000

From soft function to singular cross section

- $\hfill \ensuremath{\bullet}$ Coefficient $\mathrm{C3}$ is determined by constant parts of Hard(H), Jet(J) and Soft(S) functions
 - N3LO hard function is known $c_3^H = 8998.08$
 - N3LO jet function known $c_3^J = -128.651$
- From C_3 value can determine c_3^S , since all other ingredients are known

$$c_3^{\rm S} = \begin{cases} -19988 \pm 1440 \pm 4000 & \text{fit result} \\ -1369.57 & \text{this work, exact} \end{cases}$$

Inverse of the relation with known c_3^S allows C_3 color structures prediction

[Abbate,Fickinger,Hoang et al.'10] [Brüser,Liu,Stahlhofen'18]

[Brüser,Liu,Stahlhofen'18]

[Monni,Gehrmann,Luisoni'11]

	$n_{\rm f}^0 N^2$	$n_{\rm f}^0 N^0$	$n_{\rm f}^0 {\rm N}^{-2}$	$n_{\rm f}^1 N^1$	$n_{\rm f}^1 N^{-1}$	$n_{\rm f}^2 N^0$	sum	
$From\ c_3^{\rm S}$	2766.05	-60.1237	0.37891	-1581.01	18.4901	133.47	1277.25	
Fit	3541 ± 51	-265 ± 8	-71 ± 3	-5078 ± 145	236 ± 7	95 ± 120	-1543 ± 195	
I	Details	RR	V	RRR	000000000000000000000000000000000000000	000000	Result	s

Details

Applications

- c_2^S numerical fit

 $- c_3^H$ known, fitted c_3^J, c_3^S

Results 000000000000

oang et al.'10]

[Bell,Lee,Makris et al. '23]

[Ju, Xu, Yang, Zhou'23]

[Becher, Schwartz'08]

- 1.15 -- ----

• Higgs decay to quarks/ gluons
$$\alpha_s$$
 series convergence restored

$$\tilde{s}_g = 1 - 2.36\alpha_s + 1.617\alpha_s^2 - (22.89 \pm 5.67)\alpha_s^3$$

=
$$c_3^H, c_3^J$$
 known, attempt to extract c_3^S ggs decay to quarks/gluons α_s series convergence

• Thrust resummation for α_s determination, missing ingredient c_3^S is now available

RRV

RRR

fit

Applications

- Thrust resummation for α_s determination, missing ingredient c_3^S is now available
 - c_2^S numerical fit
 - c_3^H known, fitted c_3^J, c_3^S
 - c_3^H, c_3^J known, attempt to extract c_3^S
- Higgs decay to quarks/gluons α_s series convergence restored

$$\tilde{s}_{g} = 1 - 2.36\alpha_{s} + 1.617\alpha_{s}^{2} - \underbrace{1.785}_{exact}\alpha_{s}^{3}$$

Differential N3LO jet production in DIS and VBF

RRV Details RRR Results 000000000000

[Becher, Schwartz'08]

[Abbate,Fickinger,Hoang et al.'10]

[Bell,Lee,Makris et al. '23]

[Ju, Xu, Yang, Zhou'23]

Generalization to N3LO 1-jettiness

- Most complicated real contribution from dipole terms with emissions between i, j lines only
- For each soft momenta k and dipole eikonal factor S_{ij} dependent on p_i, p_j only with $\Theta_{ij} = \theta \left(k \cdot p_i k \cdot p_j \right)$

$$\left[\delta\left(\tau-k\cdot p_{i}-\ldots\right)\Theta_{mi}\Theta_{ji}+\delta\left(\tau-k\cdot p_{j}-\ldots\right)\Theta_{mj}\Theta_{ij}+\delta\left(\tau-k\cdot p_{m}-\ldots\right)\Theta_{im}\Theta_{jm}\right]S_{ij}$$

• With $\Theta_{mx} = 1 - \Theta_{xm}$ most singular contributions coincide with zero-jettiness contributions

$$\big[\delta \left(\tau - k \cdot p_i - \ldots \right) \Theta_{ji} + \delta \left(\tau - k \cdot p_j - \ldots \right) \Theta_{ij} \big] S_{ij} + \mathrm{less \ singular}$$

Intro Details RRV RRR Results 0000 00000000000000000000000000000000	000000
--	--------

Conclusion

- Zero-jettiness slicing scheme is pushed from N2LO to N3LO level with the last missing ingredient calculated
 - Thrust resummation in $\mathrm{e^+e^-}$ annihilation and Higgs decay
 - Differential cross section predictions for DIS and VBF
- Developed techniques
 - For efficient reduction of phase-space integrals with Heaviside θ -functions constraints in the presence of loop corrections and additional regulators
 - For the high precision numerical solution of differential equations for auxiliary integrals, making possible most complicated master integrals computation
 - For calculation of the large number of highly divergent integrals required for boundary conditions and master integrals without complicated dependence on soft partons momenta

Thank you for your attention!