ALICE and the Quark-Gluon Plasma

Marco van Leeuwen, Nikhef and CERN

20 Years of Stefan Meyer Institute 11 November 2024

Energy scales: ionisation energy

Binding energy 5 eV - 100 keV

10⁴ ⁻ 10⁹ Temperature (K)

> Heavy-ion collisions: study properties of strongly interacting 'bulk' matter — Quark-Gluon Plasma ... and understand how they emerge from the underlying theory

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Hadron (proton)

Wikimedia Commons image by Jacek Rybak

1 - 10 MeV

10¹⁰ - **10**¹¹

> 100 MeV

10¹²

Heavy ion collisions: Little Bangs

Stages of the collision: initial stages — QGP/fluid stage — hadron formation (freeze out)

'Little Bang': recreate primordial matter in the laboratory

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

ALICE at the Large Hadron Collider

The Large Hadron Collider

Le	et
Fi	rs
M	a

pp collisions $\sqrt{s} = 7, 8, 13, 13.6$ TeV

Pb-Pb collisions: $\sqrt{s_{NN}} = 2.76, 5.02, 5.36$ TeV

Low-mass detectors — **excellent pointing resolution Particle identification:** dE/dx in TPC, TRD, TOF, HMPID, EMCal, Muon system other systems: p-Pb, Xe-Xe, O-O, p-O

ALICE: A Large Ion Collider Experiment

ajor upgrades installed: 2022

Upgraded to streaming readout, 50 kHz PbPb

 $\operatorname{Run} 3$ Pb-Pb $\sqrt{s_{\rm NN}} = 5.36 {
m TeV}$ 6th Nov 2024 13:16:46 CET

III m

Step 1: temperature

Final state: hadron scattering

Taking the temperature: photons and dileptons

Electromagnetic radiation (real) photons and dielectrons (virtual photons) measure the temperature of the QGP Challenging measurement: large background from hadronic decays

Apparent (blue-shifted) temperature $T \approx 350 \text{ MeV}$

Quarkonia: nuclear modification factor

Binding force screened when $r > \lambda_d$

Binding of quarkonia $(bb, c\overline{c} bound states)$ screened at high temperature, density

Nuclear modification factor

 $dN/dp_T|_{AA}$ $R_{AA} = \frac{1}{\langle N_{coll} \rangle dN / dp_T |_{pp}}$

 $R_{AA} = 1$: no effect $R_{AA} = 0$: complete suppression

Large suppression — dissociation in central events Larger effect for higher states — weaker binding

 J/ψ : $c\overline{c}$ bound state shows smaller suppression

Early stage temperature: melting of charmonia (J/ψ)

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

In agreement with coalescence expectation: larger $c\overline{c}$ density at mid-rapidity

Azimuthal anisotropy: initial and final states

Simulated event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Constraining initial state and plasma properties simultaneously: Bayesian inference

Exploration of a large parameter space: investigate reliability/robustness of the model

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Model parameters — posterior

Model: initial anisotropies + medium response

A global fit to anisotropic flow: main result

Viscosity-to-entropy ratio: dimensionless quantity

$$\eta = \frac{1}{3}\overline{p}\lambda$$

Small viscosity \Rightarrow small mean free path

QGP is a strongly interacting gas/liquid

Viscosity of the QGP compared to 'regular' liquids

Physics 15, 1113–1117, PRC 94, 024907

Messengers of the Plasma: soft and hard processes

Soft processes

Momenta comparable to QGP temperature $p_T \lesssim 3 \text{GeV}/c$ Near thermal equilibrium with the plasma

'particles from the QGP'

Hard processes: large momenta >> *T*_{QGP}

- Short life time: expect only partial equilibration

Short formation time: initial production independent of QGP formation

• Start out far out of thermal equilibrium: approach equilibrium through interactions

'Hard probes' of interactions with the QGP

Nuclear modification of p_T spectra

Charged particle p_T spectra

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

Nuclear modification and elliptic flow of D mesons

charm quarks, m >> T are produced in an initial hard scattering

Initial production isotropic: azimuthal asymmetry due to interactions \Rightarrow approach to thermal equilibrium

Elliptic flow of charm and beauty quarks: mass dependence

Quarkonia: flow generated by quark flow and coalescence Charmonia: large elliptic flow — Bottomonia: compatible with no flow

Beauty quarks flow less than charm quarks: larger mass, slower thermalisation Open and hidden flavor allow to investigate impact of hadronisation, light quark flow

Non-prompt D mesons (open beauty) show smaller v₂

Detector upgrades

Recent ALICE upgrades

New ITS and MFT

Full pixel detector 13 Gpixels Improved spatial resolution

TPC: GEM readout

ALICE LS2 upgrade paper: arXiv:2302.01238

ALI-PERF-558822

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Improved pointing resolution and readout rate: record 50 kHz Pb-Pb collisions (50x more minimum bias events)

Run 3 results: elliptic flow of anti-nuclei and charm mesons

First large Pb-Pb data sample with upgraded detectors collected in 2023 Larger samples, better pointing resolution: improved precision

Much more to come!

ALICE upgrade projects

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Silicon pixel sensor development

High-resolution, low-mass vertex detectors are crucial for detection/identification of heavy flavour hadrons and electron-positron pairs (thermal radiation)

Development and adoption of monolithic active pixel sensors in CMOS technology

DPTS test paper arXiv:2212.08621

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Inner tracking system

ITS3 development

Thinned silicon can be curved: ultra-light structures

LHC Run 5 and 6: ALICE 3

Compact detector system with

- High-resolution vertex detector: excellent pointing resolution
- **Particle Identification over large acceptance**: muons, electrons, hadrons, photons
- Fast read-out and online processing

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

Retractable vertex tracker

Conclusion

- Heavy-ion collisions at LHC provide unique laboratory to study strongly interaction matter
 - Hottest and densest matter available in the laboratory
 - Properties: low viscosity, short mean free path
 - Slower thermalisation for beauty than charm: mass dependence
- Large upgrade for Run 3: improved precision, new channels
 - Many new results to come in the next years
- Future upgrades: focus on thermal radiation, chiral symmetry restoration, thermalisation, structure of exotic hadrons (interaction potentials)

Thanks for your attention

Start of heavy-ion run 6 November 2024: the quest continues...

Temperature of the QGP: electromagnetic radiation

T vs energy

Light flavour hadron abundances consistent with common chemical freeze-out

Limiting temperature: ~155 MeV

Electromagnetic radiation gives access to temperature of QGP before hadronisa

- Cleanest signal: dilepton pairs
- Expected T at LHC: 300-400 MeV

Projected temperature from electromagnetic radiation

Temperature from hadron abundances 'chemical freeze-out'

Unique access to **time evolution of** temperature via v_2 , p_T dependence of T

ALICE upgrades in Long Shutdown 2 (2019-2021)

New ITS and MFT

Full pixel detector Improved spatial resolution

Fast Interaction Trigger

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

TPC: GEM readout

ALICE LS2 upgrade paper: arXiv:2302.01238

ALICE upgrade for Run 3, 4: improve pointing resolution, readout rate (50 kHz for HI events)

Hadron formation: multi-HF hadrons

Multi-charm baryons: unique probe of hadron formation Statistical hadronisation model: very large enhancement in AA

• Specific relation between yields: g_c^n for *n*-charm states

ALICE 3: unique experimental access to multi-charm baryons

See also presentation by Antonin Maire

Heavy-ion collisions as a laboratory for hadron physics

- Several exotic heavy flavour states identified
- Loosely bound meson molecule or tightly bound tetraquark?
- Study binding potential with final state interactions 'femtoscopic correlations'

ALICE and the Quark-Gluon Plasma | SMI 20 year workshop, Vienna | Marco van Leeuwen

DD* momentum correlation

Bound states produce specific pattern vs system size

