Symposium for the 20th birthday of the Stefan Meyer Institute

GRASIAN

GRAvity, Spectroscopy and Interferometry with ultra-cold Atoms and Neutrons

Pauline Yzombard, laboratoire Kastler Brossel

On behalf of the GRASIAN collaboration

https://grasian.eu

GRASIAN Collaboration

5 institutes accros Europe

- Institut Max von Laue Paul Langevin,
- Institute of Particle Physics and Astrophysics, ETH Zürich.
- Laboratoire Kastler Brossel,
- Stefan Meyer Institute,
- University of Turku, <u>Wihuri Physical Laboratory</u>

Studying Gravitational Quantum States (GQS) and whispering gallery states of neutrons/hydrogens for:

- Short range fundamental forces caused by dark matter, extra dimension, new light bosons, dark energy
- CPT and Lorentz invariance violation (matter/antimatter tests)
- QED tests (spectroscopy)

Overview

- 1. Gravitational quantum states, Was ist das ?
- 2. The "in-beam" experiment @ETH Zürich/ SMI
- 3. The "trapped" experiment @Turku University (Finland)
- 4. The whispering galleries experiment @ ILL Grenoble (France)

https://grasian.eu

Overview

- Gravitational quantum states, Was ist das ?
- 2. The "in-beam" experiment @ETH Zürich/ SMI
- 3. The "trapped" experiment @Turku University (Finland)
- 4. The whispering galleries experiment @ ILL Grenoble (France)

https://grasian.eu

(

•Any trapped particle in a potential well

- \Rightarrow has its energy quantized E_n
- \Rightarrow has its probability of founding the particle in space $|\varphi_n(z)|^2$ that depends on the quantum state n

Example: 1D infinite squared well

Particle confined: (1D trap)

- In the **top**: by Gravitational potential
- In the **bottom**: by quantum reflections onto the surface
 - \Rightarrow behaves like an "atom mirror".

Quantum reflection: specular reflection of the slow particle (wave-packet) which sees a steep potential step when approaching to the surface

Particle confined: (1D trap)

$$\frac{\hbar^2}{2m}\frac{d^2\psi(z)}{d^2z} + (E - mgz)\psi(z) = 0$$

 \Rightarrow Solution Ψ = Airy function (z_n = zeros of the function)

n	<i>E</i> _{<i>n</i>} [peV]	z _n [μm]
1	1.4	13.8
2	2.5	24.0
3	3.3	32.4
4	4.1	39.9
5	4.8	46.6

Particle confined: (1D trap)

 $\frac{\hbar^2}{2m} \frac{d^2 \psi(z)}{d^2 z} + (E - mgz)\psi(z) = 0 \qquad \Rightarrow \text{Solution } \Psi = \text{Airy function} \\ (z_n = \text{zeros of the function})$

Eigenenergies $E_n \sim \text{peV}$ (~100Hz) $E_n = mgz_0\lambda_n$ with $z_0 = \sqrt[3]{\frac{\hbar^2}{2m^2g}} \sim 5.8\mu\text{m}$

Heisenberg's uncertainty: $\Delta t \Delta E \ge \frac{\hbar}{2} \rightarrow \Delta t \gtrsim 0.5 \text{ms}$ \Rightarrow Needs long interaction time to "form" the GQS

 \Rightarrow QR coefficient increases when m and v_{\perp} decrease

⇒ Requires "light" + very slow ("ultra-cold") atoms/neutrons

	п	E _n [peV]	z_n [μm]
	1	1.4	13.8
	2	2.5	24.0
	3	3.3	32.4
S	4	4.1	39.9
	5	4.8	46.6

GQS of ultra cold neutrons (UCNs)

2002: First experimental demonstration of GQS with ultra cold neutrons (UCNs) [1]

• UCNs flow between mirror and absorber separated by slit Δz

- Measurement of neutron transmission N as function of Δz
 - Stepwise increase predicted for GQS (steps at $z = z_n$)
 - Slit only becomes transparent, when $\Delta z \ge z_1$

Realized at ILL (Grenoble)

Figures taken from [1].

 [1] Nesvizhevsky, V., et al. Quantum states of neutrons in the Earth's Gravitational field. Nature 415, 297–299 (2002). https://doi.org/10.1038/415297a

Overview

- 1. Gravitational quantum states, Was ist das ?
- 2. The "in-beam" experiment @ETH Zürich/ SMI
- 3. The "trapped" experiment @Turku University (Finland)
- 4. The whispering galleries experiment @ ILL Grenoble (France)

https://grasian.eu

2. The "in-beam" experiment @ETH Z/SMI towards the 1st demonstration of GQS with H

• Mimicking the neutron historical experiment

• In development at ETH Zurich (2020-2023) and SMI (2024 and future)

2. The "in-beam" experiment @ETH Z/SMI towards the 1st demonstration of GQS with H

• Mimicking the neutron historical experiment

 $\Delta z = z_2$

 $\Delta z = z_2$

- In development at ETH Zurich (2020-2023) and SMI (2024 and future) Motivation (H vs. neutrons):
 - GQS never measured for atoms! Different interaction potential with surface compared to neutron ⇒ research of short-range extra forces
 - Easy to generate (hydrogen bottle vs. research reactor) \rightarrow Much higher fluxes available
 - Developed methods also applicable for antiatoms ($\rightarrow \bar{g}$)

2. The "in-beam" experiment @ETH Z/SMI towards the 1st demonstration of GQS with H

Mimicking the neutron historical experiment

- In **development** at ETH Zurich (2020-2023) and SMI (2024 and future) **Motivation (H vs. neutrons): Requirements:**
 - GQS never measured for atoms! Different interaction potential with surface compared to neutron \Rightarrow research of short-range extra forces
 - Easy to generate (hydrogen bottle vs. research reactor) \rightarrow Much higher fluxes available
 - Developed methods also applicable for antiatoms ($\rightarrow \bar{q}$)

- Efficient detection of hydrogen
- Good signal/background

 $\Delta z = z_2$

 $\Delta z = z_1$

- (Very) Cold hydrogen beam:
 - Slow: $v_{\parallel} \sim 50$ m/s horizontally
 - Highly collimated ($v_1 \sim 3$ cm/s)

2. The "in-beam" experiment @ETH Z In pictures (ETH Zürich setup – 2020-2023)

Hydrogen source

- H₂-gas Bottle
- Microwave discharge cavity
 - $\sim 10^{17}$ H/s
- Teflon tube
- Coldhead + Cryogenic

nozzle: 290 K \rightarrow 6.5 K

Slide: courtesy of C. Killian

6

Detection of hydrogen – overview

- Ionization of *H* with a pulsed UV-laser ($\lambda = 243$ nm)
 - $H \rightarrow H^+ + e^-$
 - 2 photon excitation (1S-2S) + 1 photon ionization

Atomic H-Beam

- Detection of H^+ with an MCP
- Integrated MCP-Signal \propto H- count rate

7

Slide: courtesy of C. Killian

2. Characterization of the H-beam source (ETH Z)

Work performed in 2020-2022, [2] Killian, Carina, et al.

- Goal: generating H atoms @ $v_{\parallel} \sim 50-100$ m/s horizontally
- \Rightarrow Selection of the atoms in the tails of the Maxwellien distribution

[2] Killian, Carina, et all (Grasian Collaboration) *Grasian: towards the first demonstration of Gravitational quantum states of atoms with a cryogenic hydrogen beam*. Eur. Phys. J. D, 77(3):50, 2023.

2. Optimization of the background (ETH Z)

Work performed in 2023, [3] Killian Carina, et al.

Goal: reducing as much as possible the background H signal ("H rest gas in the chamber" not coming from the H beam directly)

2. Optimization of the background (ETH Z)

Work performed in 2023, [3] Killian Carina, et al.

Goal: reducing as much as possible the background H signal ("H rest gas in the chamber" not coming from the H beam directly)

\Rightarrow Switching to Deuterium atoms

Fig. 13 velocity interval [m/s] [142, 279] [95, 142] [72, 95] [58, 72] [48, 58] [41, 48] 12 10 Signal H Signal [counts/pulse] Signal D BG H **∓** <u>₹</u> BG D 0.02 0.025 0.03 0.035 0.01 0.015 delay [s]

[3] Killian, Carina, et al. (Grasian Collaboration) GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms. Eur. Phys. J. D, 78 132 2024.

2. Optimization of the background (ETH Z)

Work performed in 2023, [3] Killian Carina, et al.

Goal: reducing as much as possible the background H signal ("H rest gas in the chamber" not coming from the H beam directly)

[3] Killian, Carina, et al. (Grasian Collaboration) *GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms*. Eur. Phys. J. D, 78 132 2024.

Photodetachment laser (detection zone)

Photodetachment laser (detection zone)

Improved results

- Requirements:
 - Efficient detection of hydrogen
 - Good signal/background
 - (Very) Cold hydrogen beam:
 - Slow: $v_{\parallel} \sim 50$ m/s horizontally \checkmark
 - Highly collimated (v₁~3 cm/s) In progress

Ready for first trials of GQS observations on H beam soon !

 \checkmark

🗸 (to be confirmed soon)

Overview

- 1. Gravitational quantum states, Was ist das ?
- 2. The "in-beam" experiment @ETH Zürich/ SMI
- 3. The "trapped" experiment @Turku University (Finland)
- 4. The whispering galleries experiment @ ILL Grenoble (France)

https://grasian.eu

3. The "trapped" experiment @Turku University, Finland

Goal: trapping ultra-cold H for long-living GQS

Idea: Magnetic bottle (IPT) and magneto gravity (T2) traps in cryogenic environment (<100 mK)

V. V. Nesvizhevsky, et al. A magneto-Gravitational trap for precision studies of Gravitational quantum states. Eur. Phys. J. C 123, 1–10 (2020)

3. The "trapped" experiment @Turku University, Finland

Goal: trapping ultra-cold H for long-living GQS

Idea: Magnetic bottle (IPT) and magneto gravity (T2) traps in cryogenic environment (<100 mK) [4]

[4] V. V. Nesvizhevsky, et al. A magneto-Gravitational trap for precision studies of Gravitational quantum states. EPJ. C 123, 1– 10 (2020)

3. The "trapped" experiment @Turku University, Finland

Goal: trapping ultra-cold H for long-living GQS

Idea: Magnetic bottle (IPT) and magneto gravity (T2) traps in cryogenic environment (<100 mK) [4]

[4] V. V. Nesvizhevsky, et al. A magneto-Gravitational trap for precision studies of Gravitational quantum states. EPJ. C 123, 1– 10 (2020)

The IPT trap: a large octupole magnetic trap [5]

0.04

έ 0.00

-0.02

[5] J. Ahokas, et al., *A large octupole magnetic trap for research with atomic hydrogen*, RSI **93** (2022) ARTN 023201

The IPT trap: a large octupole magnetic trap [5]

ε 0.00

-0.02

[5] J. Ahokas, et al., A large octupole magnetic trap for research with atomic hydrogen, RSI **93** (2022) ARTN 023201

Overview

- 1. Gravitational quantum states, Was ist das ?
- 2. The "in-beam" experiment @ETH Zürich/ SMI
- 3. The "trapped" experiment @Turku University (Finland)
- 4. The whispering galleries experiment @ ILL Grenoble (France)

https://grasian.eu

Hypothetical Yukawa-type force

4. The whispering galleries experiment @ ILL Grenoble (France)

With Ultra-cold NEUTRONS

• Whispering modes

4. The whispering galleries experiment @ ILL Grenoble (France)

With Ultra-cold NEUTRONS

• Whispering modes

Last beam time in spring 2023

Data analysis and modelling under progresses (Katharina Schreiner and Jason Pioquinto, Serge Reynaud, Valery Nesvizhevsky

Bonus project ?

What else can we do with GQS of H/anti-H?

Measuring the interferences of several GQS on (anti-)hydrogen atoms and extracting "g" value with 1e-4 uncertainty (application for GBAR)

Clade P. et al. Quantum interference measurement of the free fall of anti-hydrogen, Eur. Phys. J. D, 76:209, 2022.

Appendix

Gravity on different scales

Macroscopic scales

- Gravitational interaction accurately described by Newton's Law in most cases.
- In the limit of high mass densities / high velocities
 - \rightarrow General relativity

Microscopic ($\leq \mu m$) scales

- Gravity escapes perception
- How can the gravitational interaction be described at "quantum mechanical" scales?
- Are there any deviations from Newton's Law?

Motivation for Gravity tests on small scales

- Deviations from Newton's inverse square law
- New short range forces
 - Motivated by theories with large extra dimensions
 - New light bosons (Dark Matter)
 - > Spin-dependent short range forces
 - Spin-independent short range forces
 - Yukawa-type forces with range λ and strength α : $V_G = G \frac{m_1 m_2}{r} \alpha e^{-\frac{1}{\lambda}}$
 - Extra dimensions

 \rightarrow 2 large extra spatial dimensions: $\lambda \approx 10^{-5}$ m

Exclusion plot for new spin-independent interactions [2]
1,2: short-range gravity in torsion balance
4,12,13: Extra forces on top of Casimir and v.d.W interactions
5: neutron Gravitational Quantum States (GQS)
6: neutron whispering gallery effects
7: neutron scattering on nuclei
8: precision measurements of exotic atoms
15: low mass bosons from the sun in a high-purity germanium detector

[2] Antoniadis, Ignatios & Baessler, S. & Büchner, M. & Fedorov, Valery & Hoedl, Seth & Lambrecht, Astrid & Nesvizhevsky, V. V. & Pignol, Guillaume & Protasov, K. & Reynaud, Serge & Sobolev, Yu. (2010). Short-range fundamental forces. Forces fondamentales a courte portée.

Gravitational/magnetic shift of the whispering gallery

- WG Measurements in other particles:
 - Possible to measure in Mu, Ps (gravitational shift)
 - With smaller velocities measurement of <u>gravitational</u> <u>shift possible with antihydrogen</u> (Gbar)
- <u>Test measurement:</u> In future measurements we want to measure gravitational shift, this experiment is to test the measurement and analysis procedure
- We add a magnetic field with a strong gradient (20T/m)
- By controlling the polarization we should be able to observe a shift in the lines depending on the gradient orientation w.r.t. the neutron polarization
- The potential barrier will be broader/smaller, changing the tunneling probability and lifetime
- We can observe this effect if we see statistical significance in (more specifically a **vertical shift** (see next slide))

$$f = \frac{N_{UP} - N_{DOWN}}{\sqrt{\sigma_{UP}^2 + \sigma_{DOWN}^2}}$$

Hydrogen GQS

- Length scale depends on gravity and mass of particle
- High background with hydrogen, Deuterium measurement has less background but states closer to mirror surface
- Experimental limit: Minimally measured distance between mirror and scatterer (distinction between classical and quantum model must be feasible at this length scale)
- Maximal observation time:
 - Better resolution
 - Higher scattering probability of particles passing below scatterer
- Velocities of <100ms⁻¹ needed (cryogenic beam at ~6K)
- Goal is proof existence of GQS (resolution of first step) rather than resolution of multiple excited states (more challenging due to significant increase in necessary observation time)

