
Extending the Alpaka performance
portability library with CUDA Cooperative

Groups for
the CMS pixel reconstruction

M.O. Varvarin
mentors: Jiri Vyskocil, CASUS, Görlitz, Germany
Volodymyr Bezguba, KAU, Kyiv, Ukraine

Contacts: Mykhailo Varvarin,
Kyiv Academic University, Ukraine
michael.varvarin@gmail.com

 2

Alpaka

Accelerators APIs Alpaka Applications

 3

Alpaka
● Alpaka library is a header-only C+

+17 abstraction library for
accelerator development.

● Alpaka supports both GPU (CUDA,
HIP and SYCL) and CPU (OpenMP,
std::threads and Intel TBB)
accelerators, with ability to recompile
your code from one to the other,
changing just a few lines of code.

● Heavy templating under the hood for
good runtime perfomance.

 4

CUDA cooperative groups

● Traditionally CUDA had only block-
level (1024 threads) synchronization.
This requires usage of dynamic
parallelism for a lot of algorithms,
which has a large overhead.

● Cooperative groups are a new
abstraction that add support for
synchronization both on sub-block
level and the whole grid level,
allowing for more optimization.

 5

My tasks

● Research the Alpaka and CUDA APIs for ways to integrate
cooperatige groups (CG) functionality into Alpaka.

● Create an implementation of CG fucntionality within Alpaka
using CUDA.

● Reproduce that implementation using all other APIs
(optional).

● Integrate that fuctionality into CMS Pixeltrack (optional).

 6

Work and results

● Nvidia CUDA, AMD HIP, OpenMP,
std::threads and sequential accelerators
now support launching cooperative kernels
(execCooperative()), querying maximum
allowed number of blocks
(getMaxActiveBlocks()) and synchronizing
the whole grid (syncGridThreads()).

● Intel TBB (CPU) and SYCL (GPU)
accelerators are problematic and are still
WIP.

 7

Thank you for your attention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

