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Alpaka
● Alpaka library is a header-only C+

+17 abstraction library for 
accelerator development.

● Alpaka supports both GPU (CUDA, 
HIP and SYCL) and CPU (OpenMP, 
std::threads and Intel TBB) 
accelerators, with ability to recompile 
your code from one to the other, 
changing just a few lines of code.

● Heavy templating under the hood for 
good runtime perfomance.
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CUDA cooperative groups

● Traditionally CUDA had only block-
level (1024 threads) synchronization. 
This requires usage of dynamic 
parallelism for a lot of algorithms, 
which has a large overhead.

● Cooperative groups are a new 
abstraction that add support for 
synchronization both on sub-block 
level and the whole grid level, 
allowing for more optimization.
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My tasks

● Research the Alpaka and CUDA APIs for ways to integrate 
cooperatige groups (CG) functionality into Alpaka.

● Create an implementation of CG fucntionality within Alpaka 
using CUDA.

● Reproduce that implementation using all other APIs 
(optional).

● Integrate that fuctionality into CMS Pixeltrack (optional).
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Work and results

● Nvidia CUDA, AMD HIP, OpenMP, 
std::threads and sequential accelerators 
now support launching cooperative kernels 
(execCooperative()), querying maximum 
allowed number of blocks 
(getMaxActiveBlocks()) and synchronizing 
the whole grid (syncGridThreads()). 

● Intel TBB (CPU) and SYCL (GPU) 
accelerators are problematic and are still 
WIP.
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Thank you for your attention.
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