
Embedded

Software

Application

for System

on Chip (SoC)

Based on RISC-V architecture for

LHCb Velo detector

Author: ViktoriiaTarasenko (Kyiv Polytechnic Institute)

Mentors: Alessandro Caratelli (CERN)

 Marco Andorno (CERN)

❖In frame of this project, we developed a technological

concept how to interact with hardware abstraction layer

(HAL) of the TRIGLAV microcontroller using C++ coding.

PROJECT

OBJECTIVE

Complexity of ASIC

design on a single chip
Our current focus is on integrating System-on-Chip (SoC)

techniques to efficiently consolidate multiple functions onto a

single chip while enabling programmability on-detector ASICs.

TRIGLAV

UART

APB-S

GPIO

APB-S

PLIC

APB-S

MTIMER

APB-S

INTERCONNECT

APB

DMEM
subsystem

APB-S

EoC SC-M

IMEM
subsystem

IMEM

BK0

APB-S

IMEM

BK0

APB-S

IMEM

BK0

APB-S

IMEM

BK0

APB-S

A System on Chip (SoC) may include a

microcontroller as one of its components but

usually integrates it with advanced peripherals.

Microcontrollers are usually designed for special

embedded applications.

Peripherals

TIMER
Provides a configurable number of

64-bit counters where each counter

increments by a step value

PLIC
The PLIC module is designed to

manage various interrupt sources

from the peripherals.

GPIO

Provide the interface with external

modules, for example sensors.

UART
It uses a serial format, meaning

data is sent one bit at a time, and

has a programmable speed.

SoC Automation

Merge the C++ code with the

Hardware Abstraction Layer (HAL)

Execute applications (C/C++) on the

simulated RISC-V based SoC

Fast prototype reducing chances of

hardware/software bugs

Minimize the user effort in

hardware/software code design

Hardware Abstract Layer

A HAL is a software library that provides a
common interface between the application code

and the hardware-specific drivers. It simplifies
the programming process by hiding the details

and variations of the hardware from the
application level.

After exploration of documentation such as HAL
Basic Functions for GPIO:

HAL_GPIO_ReadPin()
HAL_GPIO_WritePin()
HAL_GPIO_TogglePin()
HAL_GPIO_LockPin()

HAL_GPIO_EXTI_IRQHandler()

Signal for UART

For our task with the UART peripheral, we assess
the UART API from HAL, which goes to the UART
peripheral inside the microcontroller, where we
can perform tasks like TX, RX, etc..

In our C++ code, we used to swap the TX

pin from 1 to 0 for testing a relay. A special

function can handle this using a counter to

calculate it, based on time period specified

in milliseconds.

GPIO Configuration

The configuration register allows selection of the

GPIO in Input (bit=0) or Output (bit=1) mode by

setting appropriate bits in the register.

GPIO pins can be:

* Configured to be input or output;

* Enabled/disabled;

* Input values are readable and can be optionally

used as interrupts;

* Output values are readable/writable;

Production

Hence, I've created a special function to measure

GPIO relays of read/write cycles for ongoing

evaluation and further hardware optimization.

Hopefully, it can accelerate design process of the

SoC automation and slightly improve the project

pipeline.

Thank you!

