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Why?
• IRIS-HEP “Analysis Grand Challenge”: create an end-to-end differentiable 

pipeline for HEP data analysis
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Particles move towards eachother
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• They collide!
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Produces particles which can decay… then those can decay!
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Logged as hits in our detector
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Consider the following 3 particles:First, determine the distance between 
particles using the following formulas:

dij = min(p−2
T,i , p−2

T,j ) ⋅
ΔRij

R2

diB = p−2
T,iDiagonal:

Off-Diagonal:

ΔR2
ij = (ηi − ηj)2 + (ϕi − ϕj)2

1 2

Merge particles that are “closest” 
together

3
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Now let’s cluster this!
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Step-by-step the closest particles get clustered
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Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Once this is done the clusters will then be clustered together

15

q q



Anti-  Jet ClusteringkT
• Quick Recap: What is a Jet?


• Collimated spray of particles created by a cascade of particle decays


• What does this look like?


• Finally we have our jets!
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Limitations?
• Jet Clustering has one free 

parameter: Radius


• Radius is optimized once          
(R = 0.7) then kept constant


• Small R changes can create 
non-differentiability
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Our Fix?
• Make merge decisions probabilistic by assigning each potential merge a 

probability, so now our process looks like this:

Constituent Particles Get Distance 
Matrix

Get Merge 
Probabilities

Probabilistically 
select a merge 

decision
Get Gradient

• What does this look like for us?
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Score-Based Gradient Estimator
• We are still making a random decision         Not Directly Differentiable


• Score-Estimator: Sample-based approach to computing derivatives:

∂
∂R

𝔼[L(R)] = 𝔼 [L(R)
∂

∂R
log p(n ∣ R)]
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How “well” jet 
is clustered

Merge Probability



3 Particle Toy Example (2-D)
• 2-D Toy Example: 3 particles with known 

 and 


• Aim: Study how first merge behavior 
varies with radius


• Use merged  (the combined  of the 
particles we merge) as a proxy for 

pT η

pT pT
L(R)
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Merged  plateaus for large radiuspT



Baseline-Variance Reduction
• Reduce variance by shifting the effective loss to 0:

∇R𝔼[L(R)] = 𝔼 [(L(R) − b) ⋅ ∇Rlog P(decision ∣ R)]
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Variance Reduction via Batching

Averaging over multiple samples reduces random fluctuations
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Real Particle Case
PYTHIA Generated Particles

plot by Nicole Hartman
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Gradients for Real Particles
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Summary
• Created differentiable anti- 


• Demonstrated effectiveness:


•  3-particle toy example 


• Real Data


• End-Goal: Differentiable Jet 
Clustering is one part of 
optimization pipeline!

kt
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Next Steps
• Use real loss function: invariant mass of the 2 leading  jets (dijet)pT

Example:  

Resonance decay such as 
, a correctly 

reconstructed dijet mass 
should peak around the mass 
of the resonance particle

pp → Z′ /H → jj
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Variance Reduction via Batching
• Average smaller groups of the full sample to minimize variance further:


• Distribution spread reduced!
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