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Why?

* IRIS-HEP “Analysis Grand Challenge”: create an end-to-end differentiable
pipeline for HEP data analysis
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Anti-k, Jet Clustering

* Quick Recap: What is a Jet?
» Collimated spray of particles created by a cascade of particle decays

 \What does this look like?
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 Particles move towards eachother




Anti-k, Jet Clustering

* Quick Recap: What is a Jet?
» Collimated spray of particles created by a cascade of particle decays
 What does this look like?

* They collide!
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Anti-k, Jet Clustering

* Quick Recap: What is a Jet?
» Collimated spray of particles created by a cascade of particle decays
 What does this look like?

* Produces particles which can decay... then those can decay!
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Anti-k, Jet Clustering

* Quick Recap: What is a Jet?
» Collimated spray of particles created by a cascade of particle decays
 What does this look like?

* Logged as hits in our detector
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* Quick Recap: What is a Jet?
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 What does this look like?

« Combine particles that decayed from the same original particle
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First, determine the distance between
particles using the following formulas:

: — -2 =2
Off-Diagonail: dij = mln(pT,l. , pT,j) .

AR
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ij

AR,% = (17; — ’7j)2 + (¢ — ij)z

Diagonal: d;p = pT_l2

]

Consider the following 3 particles:

pr vs n for Particles

pr (GeVv/c)

3

Merge particles that are “closest”
together




Anti-k, Jet Clustering

* Quick Recap: What is a Jet?
» Collimated spray of particles created by a cascade of particle decays
 What does this look like?

e Now let’s cluster this!




Anti-k, Jet Clustering
* Quick Recap: What is a Jet?

» Collimated spray of particles created by a cascade of particle decays

 \What does this look like?

« Step-by-step the closest particles get clustered
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Anti-k, Jet Clustering
* Quick Recap: What is a Jet?

» Collimated spray of particles created by a cascade of particle decays

 \What does this look like?

* Once this is done the clusters will then be clustered together
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Anti-k, Jet Clustering
* Quick Recap: What is a Jet?

» Collimated spray of particles created by a cascade of particle decays

 \What does this look like?

* Finally we have our jets!
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Limitations?

 Jet Clustering has one free
parameter: Radius

e Radius is optimized once
(R = 0.7) then kept constant

« Small R changes can create
non-differentiability
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Our Fix?

 Make merge decisions probabilistic by assigning each potential merge a

probability, so now our process looks like this:

. Probabilistically
Constituent Particles a== Get Dlst_ance Get 'V"?_rge select a merge
Matrix Probabilities decision

 \What does this look like for us?
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Score-Based Gradient Estimator

* We are still making a random decision —— Not Directly Differentiable

* Score-Estimator: Sample-based approach to computing derivatives:
) LR = E | LR logp(n | R)
— = — 10 n
OR ] OR P -

How “well” jet | |Merge Probability
IS clustered




3 Particle Toy Example (2-D)

« 2-D Toy Example: 3 particles with known
prandn

« Aim: Study how first merge behavior
varies with radius

« Use merged p (the combined p of the
particles we merge) as a proxy for L(R)
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Momentum (GeV)

Baseline-Variance Reduction

* Reduce variance by shifting the effective loss to O:
VREIL(R)] = E |(L(R) — b) - Vlog P(decision | R)]
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Analytical Gradients
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Momentum (GeV)

Variance Reduction via Batching

Averaging over multiple samples reduces random fluctuations
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Real Particle Case
PYTHIA Generated Particles
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Gradients for Real Particles
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169: pt=0.44,eta=-1.37, phi=-1.64
44: pt=2.85,eta=-1.34, phi=-1.63
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Summary

» Created differentiable anti-k, 6

—— MC-based mean of pmerged
—— Score-based grad (baseline + batched)

» Demonstrated effectiveness:
« 3-particle toy example

 Real Data

Momentum (GeV)

* End-Goal: Differentiable Jet
Clustering is one part of
optimization pipeline!
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Next Steps

 Use real loss function: invariant mass of the 2 leading p jets (dijet)

Example: aq. M = 2000 GeV’ qq, M = 2000 GeV
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/ . Km_ o )i 3 25'\ 8
pp — Z'/H — jj,acorrectly —=——_ A " Optimum
fr 2 004 - [ -
reconstructed dijet mass 5 g U\ ///
should peak around the mass -~ ooz} R 1 S S AN
of the resonance particle b B [ S .
1900 2000 2100 05 1 1.6

dijet mass [GeV)] R

29



Variance Reduction via Batching
» Average smaller groups of the full sample to minimize variance further:

Variance Reduction via Batching (Comparing X-Axis Spread)

Original 100 Values Means of 10 Batches (Batch Size = 10)
Standard Deviation: 4.52 Standard Deviation of Means: 1.58
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 Distribution spread reduced!
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