

RD51 VMM3a/SRS Beam Telescope

Test Beam September 2024

Gaseous Detector Development Group

Karl Flöthner, <u>Lisa Generoso</u>, Stefania Juks,

Lucian Scharenberg

EXPERIMENTAL SETUP

RD51/DRD1 Telescope

- 3 scintillators in coincidence as the trigger
- 3 triple GEM trackers
- 3 detectors under test

EXPERIMENTAL SETUP

VMM3a / Scalable Readout System (SRS)

- 64 channels per VMM
- All hybrids powered by an external power supply
- Except for those of the 20x20 cm² uRwell : internal HDMI powering in use
- Additional hybrid used to store trigger information

MM

Analogue Monitoring Output

CONTEXT AND NEED

- On-going R&D on an MPGD-based sampling hadron calorimeter for a Future Muon Collider : → uRwell prototype
- Test beam campaign in 2023-2024: data acquisition performed with APV-based electronics
- However : challenging environment posed by the presence of BIB
 → new electronics needed to meet the requirements of :
 - time resolution of O(ns)
 - rate capability of $O(MHz/cm^2) \rightarrow alternative: VMM-based readout$
 - time resolution better than 2 ns
 - trigger rates in the MHz regime

TASKS AND OBJECTIVES

Test of the VMM electronics on *µ-RWell* prototypes & Comparison with APV-based electronics

- Operation in gated mode at different threshold levels (THLs)
- Gain and Drift scans :
 - \rightarrow Estimate cluster reconstruction efficiency
 - \rightarrow Determine time resolution

Cathode PCB	_ 70 μm _
Pitch 140 µm	50 μm
	Cathode PCB

- Electronic Gain : 12 mV/fC
- Analog Threshold Levels: 0.8 fC, 1 fC, 2 fC
- Reconstruction of the beam profile
- Active area of the detector limited to the overlap of the triggering scintillators

- 1×1 cm² pad area
- 384 pads \rightarrow 3 hybrids
- Drift Gap: 6 mm
- DLC grounded, TOP and DRIFT connected to HV
- Horizontal connecting vias
- Gas Mixture Ar CO₂ CF₄ 45:15:40 and Ar CO₂ 70:30

11/10/202

Threshold Level 2 fC

• Landau Fit of the ADC Charge distributions in the range 70-3000 ADC counts

ADC distribution for DF 3.0 kV/cm, TV 560 V

- Noise peak at low ADCs
- Saturation peak around 1000 ADC

COLLECTED CHARGE

• Retrieve the **mpv** from the fit parameters

Preliminary - Ar:CO2:CF4 - THL 2fC

PAD μ -RWELL 20X20 CM² ADC MPV

• Results in agreement with measurements on a light-cathode uRwell with a picoammeter carried out by Silvia (*presented at the Common Project Meeting on 4/09/2024*)

- Maximum ADC at ~ 3 kV/cm, then decreasing at larger values of the drift field (independent of the top voltage)
- Increasing ADC at increasing Top Voltages for the whole drift range (except for some ADC-saturating runs at 420 V)
- Same behavior with ArCO₂CF₄ and ArCO₂: independent of the gas mixture, only dependent on the detector technology

Threshold Level 2 fC

- Compute the time difference between each reconstructed cluster and each trigger signal
- Ratio between number of events and number of triggers

Preliminary - Ar:CO2:CF4

EFFICIENCY BASED ON TIMING

- Consider as events the clusters with a time difference within [-500 ns, 500 ns]
- Ratio between number of events and number of triggers
- Plateau @ a top voltage of ~ 520 V
- The larger the drift field the higher the plateau level:
 ~ 90% @ 6 kV/cm

(expected : 10 % intrinsic detector inefficiency due to the groove structure)

PAD μ -RWELL 20X20 CM² Efficiency vs Top Voltage

PAD μ -RWELL 20X20 CM² Efficiency - THL comparison

• Plateau reached almost for the same charge value, independently of the drift field :

THL 1 fC @ ~80 ADC counts **THL 2 fC** @ ~100 ADC counts, but steeper turn-on rises

- The lower the THL the larger the saturating efficiency
- <u>The larger the drift field the larger the</u> <u>saturating efficiency</u>

At best (D.F. 6 kV/cm)

THL 1 fC @ ~90%

THL 2 fC @ ~87%

Inconsistent with the decreasing trend of the charge as a function of the drift field ! (shown later)

PAD μ-RWELL 20X20 CM² Efficiency - Gas comparison

Ar:CO₂ 70:30 allows for higher charge multiplication → extended range of the gain is inspected

- Substantial overlapping of the turn-on curves at low charge values (below 100 ADC)
- Saturation value of the efficiency is about one tenth larger in Ar:CO₂ than in Ar:CO₂:CF₄
- <u>The larger the drift field the larger the</u> <u>saturating efficiency</u>

Inconsistent with the decreasing trend of the charge as a function of the drift field !

(shown later)

PAD μ -RWELL 20X20 CM² Efficiency vs Drift Field

Low Top Voltage (~ low gain):

• Maximum ADC at ~ 3 kV/cm, then decreasing at larger values of the drift field

High Top Voltage (~ high gain):

• Increasing trend in the whole drift range - Inconsistent with the pulse height of the signal

RD51 VMM3a/SRS Beam Telescope - TB 09/2024 | GDD, CERN | Lisa Generoso

INSPECT FOR CROSS TALK

Cluster Size vs Pulse Height

• Search for **cross-talk effects** due to possible capacitive coupling of the connecting vias to the DLC layer

→ expected induction of charge in pads collinear to the one fired by the passing particle, **along vias direction (x-axis)**

- Most of the events have cluster size 1 → reject single-pad clusters to have a better understanding of the shape of the multiple-pad clusters
- Look separately at the extension of the cluster along the x and y directions
- Compute the average cluster size along x and y as a function of the pulse height (MPV)

INSPECT FOR CROSS TALK

Cluster Size vs Pulse Height

- Different trends along the two axis
 - Below 70 ADC : common increasing trend
 - Above 70ADC : → along x : smooth decrease below 200 ADC, subsequent increase (possible x-talk?)

→ along y: steep decrease (to be understood ...)

RD51 VMM3a/SRS Beam Telescope - TB 09/2024 | GDD, CERN | Lisa Generoso

11/10/2024

INSPECT FOR CROSS TALK

Cluster Size vs Pulse Height

Study of the pulse height of the cluster wrt the size along x for clusters with an x-extension > 2

- Mostly cluster with an x-extension equal to 3
- Peak at a pulse height close to 1000 ADC counts (saturation limit for a single pad)
- \rightarrow Only one of the fired pads saturates

Threshold Level 2 fC

• Gaussian fit of the time difference distributions

- Gaussian fit of the time difference distributions
- The **sigma** provides an estimate of the convolution of detector and electronic **time resolutions**

TIME RESOLUTION

17

PAD μ -RWELL 20X20 CM² Time Resolution - THL comparison

Threshold Level 2 fC

Preliminary - Ar:CO2:CF4 Preliminary - Ar:CO2:CF4 1.5 kV/cm 1.5 kV/cm 2.0 kV/cm 2.0 kV/cm 45 50 2.5 kV/cm 2.5 kV/cm 3.0 kV/cm 3.0 kV/cm 3.5 kV/cm 40 3.5 kV/cm 4.0 kV/cm 4.0 kV/cm e Resolution [ns] Time Resolution [ns] 4.5 kV/cm 4.5 kV/cm 5.0 kV/cm 5.0 kV/cm 5.5 kV/cm 5.5 kV/cm 6.0 kV/cm 6.0 kV/cm • e 25 · Line 20 20 • 15 10 10 480 500 420 440 460 520 540 560 420 440 460 480 500 520 540 560 Top Voltage [V] Top Voltage [V]

Threshold Level 1 fC

NEXT STEPS

Implement tracking with Corryvreckan

• Analyzed high-statistics runs to observe **dead zones** of the detector due to the **groove** evacuating structure

→ Compute the **intrinsic inefficiency** of the chamber

- Compute a track-based efficiency to see if the efficiency/pulse-height inconsistency is solved with a more refined selection of events
- Analyze lower threshold runs (0.8 fC) for a better understanding of a possible cross-talk effect

THANK YOU FOR THE ATTENTION

PAD μ -RWELL 20X20 CM² Cluster Size vs ADC

• Search for cross-talk effects due to possible capacitive coupling of the connecting vias to the DLC layer

 \rightarrow expected induction of charge in pads collinear to the one fired by the passing particle

