

Clinical and Pre-clinical Evaluation of Ac-225 Labeled Biomolecules for Targeted Alpha Therapy(TAT)

Shakera Khatoon Rizvi Research Coordinator IPD, PINSTECH

Content

Overview of PINSTECH facility

- PAEC(PINSTECH)- MEDICIS collaboration Introduction of Modern Radioligand Therapies
- Objectives of the project
- Clinical Transformation of Ac-225
 - Methodology
 - Results
 - Future Work

Targeted Therapy with Tb-161

PAEC- PINSTECH

Our research reactor PARR-I at PINSTECH is the central facility to provide radiopharmaceuticals to all the public sector and private hospitals in the country

- Mo-99m Production facility
- ^{99m}Mo/Tc99m Generator
- I-131 production
- GMP facility for production of cold kits
- Established Quality Control Labs
 - Gamma Spectrometry
 - Alpha& Beta spectrometry
 - Radio HPLC
 - ITLC
 - ICP-MS
- Animal House

PINSTECH-MEDICIS Collaboration

- Radionuclide Production
 - Cyclotron Production
 - Reactor Production
- Radiochemistry
 - Strong collaboration Mr. Irfan Tariq

Clinical Transformation of Radionuclides

- GMP Production of Radiopharmaceuticals
 - Radiolabeling of Radionuclides with Biomolecules
 - Quality Control
- Preclinical Studies
- Clinical Trials

Introduction Cancer Research Advances

Diagnosis

Decades of research have resulted into the development of theranostics

Integration of therapeutics and diagnostics in a single management approach

Single compound is used for a variety of applications in patientcentered care radiolabeled with **different radionuclide**

Theranostic

Theranostic Radiopharmaceuticals Peptide Receptor Radionuclide Therapy (clinical success) binding SSTRs, which are expressed on the cell surface of the tumor cell, followed by internalization of the radionuclide-peptide complex

Treatment

Theranostic Radiopharmaceutical

Lesser amount of pharmaceutical Maximum Therapeutic outcome

Clinical Transformation of Radionuclides Targeted Radioligand Therapies

Radio Nuclide

- Production
- > High specific Activity
- Purification

Radiopharmaceutical

- Targeted
- Stability in Vivo
- Retention Time

Oncological vector

- Overexpressed Receptors (SSTR,CD44 etc)
- Antibodies
- > FAPI

Targeting Systems

- > Active
- Passive

Targeted Alpha& Beta Therapies

Ku et al. EJNMMI Radiopharmacy and Chemistry (2019)

Cancers 2020, 12(8), 2098; https://doi.org/10.3390/cancers12082098

DNA is considered the main target for causing radiation-induced cell death and indeed, the greater the unrepaired DNA damage the higher the incidence of lethality

PRRT in Pakistan

- ¹⁷⁷Lu-DOTATATE for single patient dose has been optimized with radionuchemical purity of 98 ± 2% at pH 5 with 2M acetate buffer and 55mg of gensitic acid.
- Ppetide content varied from 250-300µg depending on the specific activity.
- Radiolabelling carried out by heating the mixture at 90°C for 30minutes
- **50mg of Ascorbic Acid** to avoid radiolysis
- Total volume of the 740MBq dose is optimized at 2ml for dispensing at hospital pharmacy

Theranostic radiopharmaceuticals in Pakistan

Development of theranostics pharmaceuticals started in 2017 with start of 1st national project for production of ¹⁷⁷Lu-DOTATATE for treatment of neuroendocrine tumors

- Registered Product of PINTHERA [¹⁷⁷Lu][Lu-DOTATAE] & [¹⁷⁷Lu][Lu-PSMA]
- More than 100 doses have been delivered to patients

180mCi ¹⁷⁷Lu-DOTATATE on 7/03/2020

Targeted Alpha Therapy

Clinical Transformation of AC-225

Objectives

- Development and Optimization of Ac-225 Radiopharmaceuticals for targeting specific oncological targets.
- Evaluate the stability, radiochemical purity and biological efficacy of Ac-225 labeled pharmaceuticals in vitro.
- Preclinical Evaluation to assess bio distribution, pharmacokinetics, and therapeutic efficacy in animal models.
- Determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs).
- Clinical trials to evaluate safety, dosimetry, and preliminary efficacy in patients.

Ac-225 Pharmaceuticals

Recurrence of resistant disease after treatment with β- emitter like Lu-177

Decay cascade of six daughter Progeny

- Substantial amount of energy
 - Alpha & Beta combined
- High Linear Energy Transfer
- Suitable for micrometastasis
- Lower radionuclide doses

Results

Quality Control of Ac-225 Received from MEDICIS-CERN

Radionuclide Purity

Gamma spectrometry

Ac-225 eluted from Ra-225/AC-225 Generator at PINSTECH

Nuclide	Energy (KeV)	Gamma Abundance (%)	Efficiency	Activity (Bq)	Error
²²¹ Fr	218.12	11.4	0.76	4.02E+108	2.57E+112
²¹³ Bi	440.5	25.94	0.42	2.69E+72	1.33E+73
²²⁵ Ac	99.8	1.0	1.13	36468	4574
²²⁵ Ac	150.1	0.6	0.97	27016	3325
²²⁵ Ac	157.3	0.32	0.94	24174	4701
²²⁵ Ac	188	0.45	0.85	28611	1320
²²⁵ Ra	40	30	0.92	19	4

Radiochemical Purity

ITLC-SG Chromatogram of Ac-225

Solvent: 0.1M Citrate Buffer, pH 5

Solvent: Aqueous Acetonitrile

Preparation of [225Ac][Ac-DOTATATE]

Optimized conditions for preparation of [²²⁵Ac][Ac-DOTATATE] with RCP >95%

- 30 KBq of Ac-225 in 100µl of 0.1M HCl
- 200µg of DOTA-TATE
- 2ml of Tris buffer pH 6.8
- 1M Sodium Ascorbate 100µl
- Heating time: 120 minutes at 95°C

Future Works

In Vitro studies

In vivo preclinical studies

 Clinical Trial for TAT of neuroendocrine patients

Tb-Phramaceuticals

¹⁶¹ Tb		β ⁻ Emission Therapeutic	E _{av.} 154 KeV
6.9 d		γ Emissions SPECT Imaging	25.65 (23%),48.91 (17%), 74.56 (10%)
65 5.32 d	SPECT	Electron energies	~ 12.4 e−, 46.5 keV per decay

- Tb has four medically relevant isotopes, covering all major nuclear medicine modalities
- Enable theranostics with chemically identical radiopharmaceuticals.
- ¹⁵⁵Tb and ¹⁶¹Tb may be more available

Quality Control [Radiochemical Purity Tb-161]

Radiochemical purity of the ¹⁶¹TbCl₃ solution was determined through Radio Instant Thin layer Chromatography

Radiochemical purity achieved > 99%

The absence of the R_{f} 0 fraction

- No species of Tb forming colloids in Solution
- Only ¹⁶¹Tb³⁺ in the final product making complex with citrate

Radio Thin Layer Chromatogram of ¹⁶¹TbCl₃

Solvent System: 0.1 M sodium citrate (pH 5)

Thank You