

LOW-Q² TAGGER ACTIVITIES

EIC UK meeting, Birmingham

Simon Gardner* Ken Livingston, Derek Glazier University of Glasgow

18th November 2024

*Simon.Gardner@Glasgow.ac.uk

CONTENTS

[International and Glasgow Workforce](#page-2-0) [Design](#page-10-0) [Challenges](#page-13-0) [Updates - Beamline Integration](#page-15-0) [Updates - Data Management](#page-22-0) [Status and Plans](#page-27-0)

INTERNATIONAL AND GLASGOW WORK-FORCE

-

INTERNATIONAL TEAM - EIC PROJECT SUPPORT

Figure 1: Organization of the EIC project CAMs

Yulia Furletova - FF/FB CAM
Andrii Natocii - Geant4 Synchrotron simulation

Jarda (Jaroslav Adam) - DSC Lead

Figure 2: Organisation of the ePIC collaboration DSCs

Simon Gardner - DSC Technical Lead

UK WP2 TEAM

Figure 3: Organisation of the UK WP2

Ken Livingston

Daria Sokhan

Rob Apsimon

Simon Gardner

Derek Glazier

Physics

Rachel Montgomery - Ex-Exclusive PWG Convener

Oliver Jevons - DVCS

Gary Penman - Helium DVCS, PhD Student?

No Picture Found Hao Jiang - DVMP

Photon Sensors for Cherenkov **Detectors**

Rachel Montgomery

Andrew Cheyne - PhD Student 6

EPIC LOW-Q² TAGGER - INTRODUCTION

ePIC Low-Q² Tagger

- ∙ For precise measurements of photoproduction and vector mesons.
- ∙ The ePIC Low-Q² Tagger extends the reach of the central detector down to effectively Q^2 =0.
- ∙ Located after the first group of beamline steering and focusing magnets.
- ∙ Scattered electrons follow a unique path through the magnetic optics, resulting in a unique measured electron vector.
- ∙ Electrons with reduced energy are steered away from the main beam.
- ∙ Transforming the vector back through the magnetic optics accesses the original scattered vector.
- ∙ 4-momentum of the virtual photon interaction can be inferred.

Figure 5: 2 Low- Q^2 Tagger stations placed beside the outgoing electron beamline.

Figure 4: ePIC Low- Q^2 Tagger in Far Backward region.

EPIC LOW-Q² TAGGER - ACCEPTANCE

Acceptance of reconstructed low-Q2 tagger electrons as a function of energy and Q^2

x-Q 2 acceptance showing central and low-Q 2 tagger.

Limitations

- ∙ Integrated acceptance or Quasi-real photoproduction events.
- ∙ Most events are produced at the highest energy, too close to the electron beam.
- ∙ Low energy lost in beamline magnets.
- \cdot Q² gap between central detector due to beamline magnet configuration. ⁸

EPIC LOW-Q² TAGGER - RESOLUTION

Figure 6: Reconstructed kinematics and resolution of Quasi-Real photoproduction electrons. *ϕ* has been limited to where *θ*>1 mrad

Limitations

- ∙ Fundamentally limited by the beam divergence.
- ∙ *ϕ* can never be extracted below the beam divergence limit.
- ∙ Limited acceptance where polarization observables will be possible.

Figure 7: Reconstruction of O^2

DESIGN

EPIC LOW-Q² TAGGER - DESIGN

Tagger Design

- ∙ Two tagger stations covering different energy ranges.
- ∙ Tracker consisting of 4 layers of Timepix4 detectors.
- ∙ Detector layer consisting of tiled Timepix4 ASICs using TSV.
- ∙ SPIDR4 readout
- ∙ Calorimeter based on the luminosity systems design for high rates.

Figure 9: CAD model of a tagger station

Figure 8: SPIDR4 readout - K. Heijhoff et al 2022 JINST 17 P07006

Hardware and Tests

- **Medipix4 collaboration** progress on Through- Silicon-Vias
	- 4 side buttable
	- Improved power distribution
	- Impedance of wire bonds smaller allowing faster readout.
	- Successful tests demonstrating improvements in readout
	- TSV processing technique being fine-tuned.

Pixel Readout Chips using Through-Silicon-Vias

CHALLENGES

EPIC LOW-Q² TAGGER - FOUR KEY CHALLENGES

Challanges

- ∙ EIC integration
- ∙ Data Rate
- ∙ Background Rejection
- ∙ Momentum Reconstruction

Figure 11: Design of tagger station. Carbon fibre vacuum exit window perpendicular to the beam to minimize material. Sloped copper foil to minimize beam impedance.

Figure 10: Left - Distribution of Bremsstrahlung (blue) and signal Quasi-real (red) events across Q^2 . Right - Fraction of signal

UPDATES - BEAMLINE INTEGRATION

New B2eR configuration

Lattice file v6.2: Cold B2eR

Lattice file v6.3: Warm B2eR

 $(\theta_{\text{RFND}} = 20 \text{ mrad})$

Step 2: Ante-chamber height scan

Ante-chamber height, H [cm]

Old vs New inconsistency

Beam Core: SR Rate on Taggers **G4 (realistic) model of the beam pipe with**

Beam Core: SR Rate on Taggers

G4 (realistic) model of the beam pipe

UPDATES - DATA MANAGEMENT

-
- Remove Bias \cdot Need latent space to be orthogonal to conditions
Femonts from latent space coordinates
	- Loss subtracted from main training so bias is removed.

x-0.0_y-0.0_px--0.05_py--0.05

Input **Predicted**

- ∙ Object Condensation method presented by Jan Kieseler 20201 .
- ∙ Graph network architecture taking each hit as a node.
- \cdot GravNet layers pass messages between closest neighbours in learned space².
- ∙ After passing through the graph layers, every node now has the information encoded for a track.
- ∙ A single hit per track is identified as a "condensation point", should provide the best estimate of track properties.
- ∙ Hits from the same track are clustered around the the condensation point.
- ∙ Classification and regression can additionally be carried out on the encoded information.
- \cdot Recent study on simulations for Charged Particle Tracking at the High Luminosity LHC 3 .

Fig. 1 Illustration of the effective potential that is affecting a vertex belonging to the condensation point of the object in the centre, in the presence of three other condensation points around it

Is this a sledgehammer to crack a nut for the Low-Q² tagger? - Maybe... But the unknown backgrounds are expected to be high.

- 1 Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data
- 2 Learning representations of irregular particle-detector geometry with distance-weighted graph networks
- ³An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC

1400 **ID** 1400^{1400}

Tracker (Module 2)

Figure 7: Distribution of artificial noise hits added to event.

Figure 8: Sample event showing tracks identified in module 2 with inefficiencies and noise added

Figure 9: Efficiency and purity as a function of included noise

STATUS AND PLANS

Hardware and Tests

- Glasgow Tests:
	- Tests by summer student over the Summer.
	- Single chip, ironing out technical issues and readout code.
	- Slight damage to equipment has stunted progress.

Hardware and Tests

- Beamtest:
	- Mainz 3-6th December
	- High(ish) rate 1.5 GeV electrons
	- Measure tracks from two layers

2xTimepix4, detector telescope

Conclusions

- ∙ Tests underway with Timepix4 assemblies and readout.
- ∙ Simulation, analysis and benchmarks included in ePIC software framework.
- ∙ GNN approaches for track identification and reconstruction on FPGA.
- ∙ Fast Simulation of detector effects and digitization.
- ∙ Progress on beamline and synchrotron studies, need many more iterations to optimize outcome.
- ∙ Questions?

