

LOW-Q² TAGGER ACTIVITIES

EIC UK meeting, Birmingham

Simon Gardner^{*} Ken Livingston, Derek Glazier University of Glasgow

18th November 2024

*Simon.Gardner@Glasgow.ac.uk

CONTENTS

International and Glasgow Workforce Design Challenges Updates - Beamline Integration Updates - Data Management Status and Plans

INTERNATIONAL AND GLASGOW WORK-FORCE

_

INTERNATIONAL TEAM - EIC PROJECT SUPPORT

							WBS 6.10	EIC Detector	r					
WBS- Item:	WBS 6.10.01 Detector Management	WBS 6.10.02 Detect. R&D & Physics Design	WBS 6.10.03 Tracking	WBS 6.10.04 Particle Identification	WBS 6.10.05 Electromagnetic Calorimetry	WBS 6.10.06 Hadronic Calorimetry	WBS 6.10.07 Magnets	WBS 6.10.08 Electronics	WBS 6.10.09 DAQ/Computing	WBS 6.10.10 Detector Infrastructure	WBS 6.10.11 Integration & Auxiliary Detectors	WBS 6.10.12 Detector Pre- Ops & Commissioning	WBS 6.10.13 Detector #2 Development	WBS 6.10.14 Polarimetry and Luminosity
CAMs:	Rolf Ent 🖄 (JLab) & Elke- Caroline Aschenauer 🖄 (BNL)	Thomas Ullrich @ (BNL) & Rolf Ent @ (JLab)	Rolf Ent @ (JLab) Interim	Beni Zihlmann t∄ (JLab)	Alexander Bazilevskyt⊉ (BNL)	Oleg Eysert⊉ (BNL)	Renuka Rajput- Ghoshal 🗗 (JLab)	Fernando Barbosa t∄ (JLab)	David Abbott t∄ (JLab) & Jeff Landgraft∄ (BNL)	Rahul Sharma 🗗 (BNL)	Yulia Furtetova L ^a (JLab)	E.C. Aschenauert⊉ (BNL)	E.C. Aschenauer 2 (BNL) & Rolf Ent 2 (JLab)	Frank Rathmann ⊠ (BNL)

Figure 1: Organization of the EIC project CAMs

Yulia Furletova - FF/FB CAM

Andrii Natocii - Geant4 Synchrotron simulation

Jarda (Jaroslav Adam) - DSC Lead

Figure 2: Organisation of the ePIC collaboration DSCs

Simon Gardner - DSC Technical Lead

UK WP2 TEAM

Figure 3: Organisation of the UK WP2

Ken Livingston

Daria Sokhan

Rob Apsimon

Simon Gardner

Derek Glazier

Physics

Rachel Montgomery - Ex-Exclusive PWG Convener

Oliver Jevons - DVCS

Gary Penman - Helium DVCS, PhD Student?

Photon Sensors for Cherenkov Detectors

Rachel Montgomery

No Picture Found Hao Jiang - DVMP

Andrew Cheyne - PhD Student

EPIC LOW-Q² TAGGER - INTRODUCTION

ePIC Low-Q² Tagger

- · For precise measurements of photoproduction and vector mesons.
- \cdot The ePIC Low-Q^2 Tagger extends the reach of the central detector down to effectively Q2=0.
- Located after the first group of beamline steering and focusing magnets.
- Scattered electrons follow a unique path through the magnetic optics, resulting in a unique measured electron vector.
- Electrons with reduced energy are steered away from the main beam.
- Transforming the vector back through the magnetic optics accesses the original scattered vector.
- · 4-momentum of the virtual photon interaction can be inferred.

Figure 5: 2 Low- Q^2 Tagger stations placed beside the outgoing electron beamline.

Figure 4: ePIC Low-Q² Tagger in Far Backward region.

EPIC LOW- \mathbf{Q}^2 TAGGER - ACCEPTANCE

Acceptance as a function of scattered electron energy and reaction log_(Q²)

Acceptance of reconstructed low-Q2 tagger electrons as a function of energy and Q^2

 $x\mathchar`-Q^2$ acceptance showing central and low-Q^2 tagger.

Limitations

- · Integrated acceptance or Quasi-real photoproduction events.
- Most events are produced at the highest energy, too close to the electron beam.
- $\cdot\,$ Low energy lost in beamline magnets.
- $\cdot \ Q^2$ gap between central detector due to be amline magnet configuration.

EPIC LOW-Q² TAGGER - RESOLUTION

Limitations

- Fundamentally limited by the beam divergence.
- $\cdot \phi$ can never be extracted below the beam divergence limit.
- Limited acceptance where polarization observables will be possible.

Figure 7: Reconstruction of Q²

Figure 6: Reconstructed kinematics and resolution of Quasi-Real photoproduction electrons. ϕ has been limited to where θ >1 mrad

DESIGN

EPIC LOW-Q² TAGGER - DESIGN

Tagger Design

- $\cdot\,$ Two tagger stations covering different energy ranges.
- · Tracker consisting of 4 layers of Timepix4 detectors.
- $\cdot\,$ Detector layer consisting of tiled Timepix4 ASICs using TSV.
- SPIDR4 readout
- · Calorimeter based on the luminosity systems design for high rates.

Figure 9: CAD model of a tagger station

Figure 8: SPIDR4 readout - K. Heijhoff et al 2022 JINST 17 P07006

Hardware and Tests

- Medipix4 collaboration progress on Through-Silicon-Vias
 - 4 side buttable
 - Improved power distribution
 - Impedance of wire bonds smaller allowing faster readout.
 - Successful tests demonstrating improvements in readout
 - TSV processing technique being fine-tuned.

CHALLENGES

EPIC LOW-Q² TAGGER - FOUR KEY CHALLENGES

Challanges

- · EIC integration
- Data Rate
- Background Rejection
- · Momentum Reconstruction

Figure 11: Design of tagger station. Carbon fibre vacuum exit window perpendicular to the beam to minimize material. Sloped copper foil to minimize beam impedance.

Figure 10: Left - Distribution of Bremsstrahlung (blue) and signal Quasi-real (red) events across Q^2 . Right - Fraction of signal

UPDATES - BEAMLINE INTEGRATION

New B2eR configuration

Lattice file v6.2: Cold B2eR

~15 m from the IP6

Lattice file v6.3: Warm B2eR

 $(\theta_{BEND} = 20 \text{ mrad})$

Step 2: Ante-chamber height scan

Ante-chamber height, H [cm]

A.Natochii

Old vs New inconsistency

Beam Core: SR Rate on Taggers

Beam Core: SR Rate on Taggers

UPDATES - DATA MANAGEMENT

Remove Bias

- · Need latent space to be orthogonal to conditions
- Train adversarial network to try and identify conditions from latent space coordinates
- Loss subtracted from main training so bias is removed.

x-0.0_y-0.0_px--0.05_py--0.05

Input

Predicted

- Object Condensation method presented by Jan Kieseler 2020¹.
- · Graph network architecture taking each hit as a node.
- · GravNet layers pass messages between closest neighbours in learned space².
- · After passing through the graph layers, every node now has the information encoded for a track.
- A single hit per track is identified as a "condensation point", should provide the best estimate of track properties.
- · Hits from the same track are clustered around the the condensation point.
- · Classification and regression can additionally be carried out on the encoded information.
- Recent study on simulations for Charged Particle Tracking at the High Luminosity LHC³.

¹Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data

- ²Learning representations of irregular particle-detector geometry with distance-weighted graph networks
- ³An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC

Fig. 1 Illustration of the effective potential that is affecting a vertex belonging to the condensation point of the object in the centre, in the presence of three other condensation points around it

Is this a sledgehammer to crack a nut for the Low-Q² tagger? -Maybe... But the unknown backgrounds are expected to be high.

Tracker (Module 2)

Figure 7: Distribution of artificial noise hits added to event.

Figure 8: Sample event showing tracks identified in module 2 with inefficiencies and noise added

Figure 9: Efficiency and purity as a function of included noise

STATUS AND PLANS

STATUS AND PLANS

Tracker	
Date	
Jan 2024	2 x SPIDR4 kits in Glasgow
Summer 2024	Tests in Glasgow
December 2024	Tests in Mainz
Summer 2025	Engineering + DAQ tests in JLab
Autumn 2025	Final Design complete
Oct 2026	Start of construction
Oct 2030	Ready for installation

Calorimeter	
Date	
May 2025	Final design complete,
	review, start of construction
Oct 2030	Ready for installation

Hardware and Tests

- Glasgow Tests:
 - Tests by summer student over the Summer.
 - Single chip, ironing out technical issues and readout code.
 - Slight damage to equipment has stunted progress.

Hardware and Tests

- Beamtest:
 - Mainz 3-6th December
 - High(ish) rate 1.5 GeV electrons
 - Measure tracks from two layers

2xTimepix4, detector telescope

Conclusions

- Tests underway with Timepix4 assemblies and readout.
- Simulation, analysis and benchmarks included in ePIC software framework.
- GNN approaches for track identification and reconstruction on FPGA.
- · Fast Simulation of detector effects and digitization.
- Progress on beamline and synchrotron studies, need many more iterations to optimize outcome.
- · Questions?

