

Calorimeter **Construction for** Luminosity Monitoring **Alex Smith** University of York Dr. Nick Zachariou, Prof. Dan Watts

alex.smith3@york.ac.uk

Supported by: STFC Grants - ST/V001035/1, ST/W004852/1 and STFC Studentship - 2824381

Luminosity Summary

 Luminosity ~ likelihood of collision occurring between particles. $\frac{e}{L} = \sigma R$

• σ - cross section, R - rate.

 By measuring the rate of a process with a known cross section, can calculate luminosity

Source - https://cds.cern.ch/record/2800578/files/Cross%20Section%20and%20Luminosity%20Physics%20Cheat%20Sheet.pdf 2

Figure - Dr. Dhevan Gangadharan, UoH. 3

down releasing a photon.

 Bremsstrahlung cross section known from QED.

• $\sigma_{eA} = Z_A^2 \sigma_{ep}$.

Braking radiation - electron slows

Lumi Requirements

Precision on absolute luminosity to 1%.

 Precision on relative luminosity to 10⁻⁴.

• Complementarity and Redundancy.

Far Backwards Region

• Luminosity is determined in the far backwards region:

• Low Q² Tagger.

Direct Photon Detector.

• Pair Spectrometer.

Luminosity monitoring system

UNIVERSITY

Pair Spectrometer

• Thin beryllium converter produces e+ e- pair from photon.

Two detectors count rate of pairs.

• Less affected by high radiation.

PS Requirements

epice University

• Energy resolution < 15%/sqrt(E).

 Timing resolution on the order of 5 ns.

 5σ gap between the calorimeter for the bremsstrahlung beam.

• Calibration during operation.

Figure - Dr. Dhevan Gangadharan, UoH. 8

Pair Spectrometer Rates

- 1% of photons converted into
 - pairs.

Not all events will see hits in both detectors.

• Coincidence rate is high even with low conversion probability.

PS Calorimeter Design

• Spaghetti calorimeter design, plastic scintillating fibres in tungsten powder.

• Fibre diameter and spacing both 0.5mm.

• Volume ratio of 4:1, tungsten to fibre.

PS Calorimeter Design

• Tiles consisting of 448 fibres will be the base construction unit.

• Three tiles will be stacked to produce a 180 mm tall layer.

• Brass plates are used to keep the fibres in place

PS Calorimeter Design

 Layers are alternated between X and Y to give positional information.

• Overall size of 18³ cm³.

• Calorimeter design may be used by the DPD and low Q² taggers.

Density	9 g cm-3
Moliere Radius	15 mm
Mass	~ 60 kg

Construction Update

• Fibres are threaded through 4 brass meshes.

 Mesh holder is used to thread 95% of fibres.

• Final fibres must be done manually.

Construction Update

• Fibres and meshes are placed in the mould.

 Mould is filled with tungsten powder.

• Epoxy is poured over the top.

• Baked at 60° for two hours.

Construction Update

After being freed from the mould, some sides need grinding down.

Light transmission through fibres is mostly maintained.

After machining ~ 0.9 kg.

Module Testing

 As of now five modules have been produced.

 Initial testing is underway at York with cosmics.

• Tests of module uniformity have also been performed.

UNIVERSITY

Module Testing

• As of time of writing, 5 modules have been constructed.

 PCBs are currently being populated with siPMs for readout.

 These will be tested at Mainz 2nd -6th of December.

Acrylic light guide

Tungsten-SciFi Cal Bar

A2 MAMI Tests

• Modules will be placed in the A2 tagger at Mainz.

 Placement of the modules will give information on electron energies (~ 400 MeV).

• Full energy will likely not be captured but detector response can be studied.

Summary

• The far backwards region is a critical part of the ePIC detector and the scientific program of the EIC, by providing the ability to measure luminosity to a high degree of accuracy.

• The pair spectrometer allows for a complimentary measurement of luminosity, especially relevant at the high luminosities reached by the EIC.

• PS system is progressing well and is on track to meet requirements.

Module Testing

Energy Deposited in Channel for Both Coincidences

Energy Deposited in Channel for Both Coincidences

Energy Deposited in Channel for Both Coincidences

Tungsten-SciFi Cal Bar