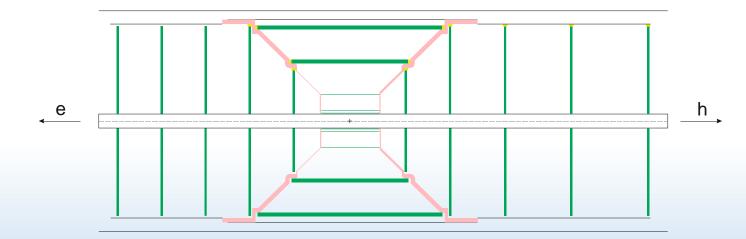

ePIC Silicon Vertex Tracker Overview, layout, production and integration

Georg Viehhauser

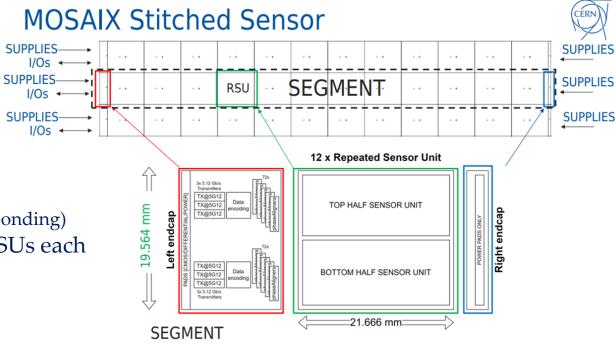
SVT



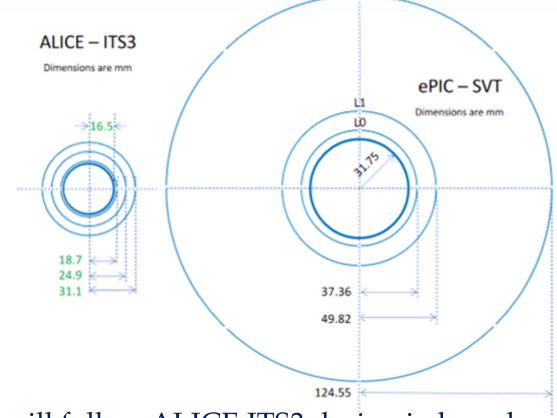
- 5 barrels, 5 disks (each end)
- Barrel
 - 3 layers inner barrel (IB): Half-cylinders out of bent silicon (like ALICE ITS3) IT and US
 - 2 layers outer barrel (OB): Individual staves with carbon fibre structure UK
 - ~1/3 of SVT
 - All barrel layers supported by carbon fibre support cone
- Disks: corrugated carbon-fibre half-disks US
- Sensor will be an ultra-thin (40 μm), waferstitched CMOS sensor
 - Developed by ATLAS ITS3: MOSAIX
 - We will use MOSAIX for IB, and modification (EIC-LAS) for OB and disks
- Air cooling with flow contained in local support structures
- Radiation levels at EIC are significantly below LHC
 2

Layer properties

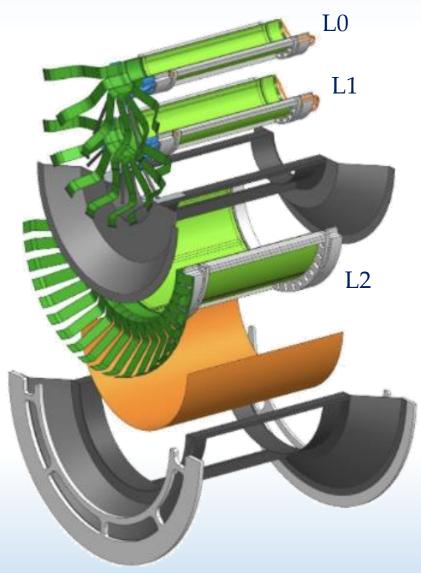
Barrel dimen	nominal Isions	Layer radius [mm]	Layer lengths [mm]	X/X ₀ [%]		disk	z [mm]		disk	z [mm]	Outer radius [mm]	X/X ₀ [%]
	LO	36	270	0.05	side	ED1	-250	side	HD1	250	240	0.25
IB	L1	48	270	0.05		ED2	-450		HD2	450	415	0.25
	L2	120	270	0.05	Electron	ED3	-650	Hadron	HD3	750	421	0.25
	L3	270	540	0.25	ш	ED4	-850		HD4	1000	421	0.25
OB	L4	420	840	0.55		ED5	-1050		HD5	1350	421	0.25


Sensors

- MOSAIX (ALICE ITS3)
 - CMOS Monolithic Active Pixel Sensors
 - Front-end electronics is integrated with sense elements
 - Repeated Sensor Unit (RSU) 12 off
 - Contains sense elements & power/read-out distribution
 - Left and Right End-cap (LEC and REC)
 - Chip-common functions (control, power, multi-plexing, etc.)
 - Internal connections between sections by stitching
 - No external cables required, connections only to LEC (by wire-bonding)
 - MOSAIX sensors with 3, 4 or 5 segments (rows) of 12 RSUs each
 - Silicon is thinned down to $40 \ \mu m$
 - This makes it flexible enough that it can be bent


• EIC-LAS

- MOSAIX is developed for a small size (0.12 m²) vertex detector
 - ePIC SVT is much larger (about $\times 50$) \rightarrow yield becomes a significant concern
 - Also need more flexibility to cover complex shapes (in particular disks)
- EIC-LAS will consist of one segment of 5 or 6 RSUs each with a LEC
- Modifications to the chip design (mostly in LEC) required (UK involved)


ALICE ITS3 and ePIC IB

- IB will follow ALICE ITS3 design in barrel
- But already with significant changes
 ePIC IB is more than 2 times larger than ITS3

 - Due to the beam pipe geometry, and the need for full disk acceptance services need to be routed along service cones

Power and cooling

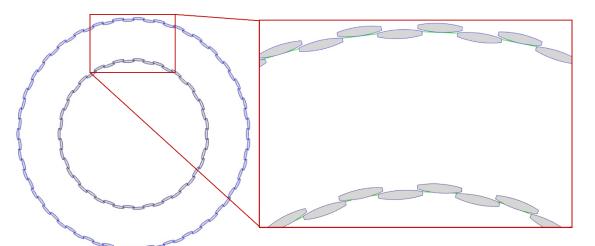
- Due to large size of SVT we need to supply individual LAS with cables
 - Flexible Printed Circuits (FPCs) 14 μ m Al traces on 25 μ m Kapton carrier
 - To reduced number of lines (material) use serial powering
 - Supply current flows through four consecutive LAS
 - To cope with load variations this requires a set of auxiliary electronics, called a shunt Low-Drop-Out (LDO) regulator
 - This, and other circuitry required for control and powering will be integrated into an ancillary chip (AncASIC) designed for ePIC with UK involvement
 - One AncASIC per LAS
- The heat generated by the sensors (1-2 W per LAS), and AncASIC (35-45% of LAS power), and by ohmic losses in the FPC (20-30% of LAS power) needs to be removed by a cooling system
 - Like ALICE ITS3 we plan to do this by flowing air close to the heat sources
 - Eliminates material associated with liquid or evaporative cooling
 - In ePIC SVT this air flow will be contained within mechanical support structures of OB staves and disks
 - This gives us reliability and predictability
 - Required air speeds (for a coolant Δ T=10°C between input and output) will be around 10 m/s
 - This is significant, and will induce mechanical loads on the support structures

OB

- Segmented into staves as long as each barrel
 - Supported from support cones at each end this includes service connections
- Modules (2 LAS side-by-side + 2 AncASICs on common carrier)
 - Glued on openings in stave skin

Module Assembly

K9 Foam Cross Brace


Carbon Fibre Skin

Carbon Fibre I-Beam

Ultern End Support

IEPCY

- Hollow stave core with CF central spar and face sheets
- Cross-ribs from thermally conductive carbon foam
- Side close-outs from Kapton (FPCs)
- Current design has curved surfaces (with curved silicon modules)
 - Evaluate layout benefits vs manufacturing challenges (bonding)

Layer	Innermost radius [mm[Outermost radius [mm]	RSU/LAS	Staves/layer	LAS/stave AncASIC/stave	LAS/layer AncASIC/layer	Power/stave (max) [W]	
L3	264.75	279.25	6	46	8	368	22.0	
L4	416.75	431.2	5	70	16	1120	47.3	

The UK SVT project

- The UK deliverable to the SVT will be the L3 and L4 staves
 - All aspects: modules (with LAS and AncASICs), FPCs + RDOs, stave structures, all electrical connections bonded
 - Fully tested
 - Will be shipped to BNL for integration on support cones
 - We probably also want to be part of that integration
- Within the UK two centres of construction activity
 - Modules, module wire bonding, module testing: Birmingham, Daresbury Lab, Liverpool
 - Staves, stave integration (incl. TAB) and testing: Oxford, RAL
 - Other test activities (wafer probing etc.): Birmingham, Daresbury, RAL, Brunel
- The wide field of construction activities, and of the expertise we bring to the project means that we are already involved in the project at all levels
 - One co-TC and in almost all international WPs one WP coordinator from the UK

Timeline

Gantt chart: EIC Full Infrastructure Project

Version: 3.0 Author: Peter Jones (p.g.jones@bham.ac.uk)

Starting date:	01/04/2025	Year	20	25			20	026		Γ	2	027	'	Т	- 2	028		Γ	- 20	029			20	30	Т		203	1	Т	- 2	203	2	Т	1	203	3	Т		203	4	Τ		20	35			2	036	
Year:	2025	Q	2	з	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3,	4	1 2	2	3 4	1	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Quarter:	2	nQ	1	2	3	4	5	6	7	8	9	10	0 1	1 1:	2 1	3 14	4 18	5 10	5 17	18	19	20	21	22	23	24	25 2	26 2	7 2	8 2	93	30 3	13	2 3	33	4 3	35 3	36 3	37 :	38 :	39	40	41	42	43	44	45	5 46	5 47
		CD milestone				з								Γ				Γ							Τ								Γ							4	4e								4

ID	Task	Start Time	End Time	Duration Q]	Pre	-Awo	ard					Fulli	nfrast	tructu	re Pro	oject	t								C	Cont	inge	ency					
	WP1 - Silicon Tracker																																_	
1	Sensor Design	01/04/2025	30/09/2027	10		11			LP		ιo							Т					Т							Т	\top	\square	Ì	Т
2	Sensor Characterisation	01/04/2025	31/12/2027	11																								\Box		Т				
3	Sensor Pre-Production Testing, site setup and qualification	01/01/2027	31/12/2027	4																								\Box						
4	Sensor Production Testing (QC/QA)	01/01/2028	31/12/2028	4																										Т			Ì	
5	And ASIC Design	01/04/2025	01/08/2026	6	A3				AO												11	- 51		401	Vor	ion	1.0	ubr	nissia	ion			ĺ	1
6	And ASIC Testing	01/04/2025	30/09/2027	10																														
7	Flexible Printed Circuits – Design and Testing	01/04/2025	30/09/2027	10																	LP	= Elo	C-L	AS I	Proc	duc	tior	i Ve	rsio	in su	Jpm	nissio	l	n
8	Flexible Printed Circuits – Production and Testing	01/10/2027	31/12/2028	5																	LO	= 0	orde	er El	C-L	AS I	Pro	duc	tion	n Se	inso	rs		
9	Modules - Prototypes	01/04/2025	31/03/2027	8																	A3	= A	\nc	ASIC	CM	PW	3							
10	Modules - Preproduction, site setup and qualification	01/04/2027	30/06/2028	5																	AC	= 0	Ord	er P	roo	luct	tion	An	cAS	aic				
11	Modules - Production	01/07/2028	30/06/2030	8																									545					
12	Staves - Prototypes	01/04/2025	31/12/2026	7																				deliv										
13	Staves - Preproduction, site setup and qualification	01/01/2027	31/12/2027	4																	=	Rec	quir	edr	ead	dine	ss f	or ir	nsta	Illati	ion	at Br	1	L
14	Staves - Production	01/01/2028	31/12/2029	8																			T											
15	Staves - Loading	01/04/2029	30/09/2030	6																										Т	T		1	
16	Staves - Testing	01/07/2029	31/12/2030	6																										Т	T		1	
17	Shipment to BNL	01/10/2029	31/03/2031	6														D												Т	T		1	
18	Installation and Testing at BNL	01/01/2030	30/06/2031	6															1											Т	T		1	
19	Commissioning at BNL	01/04/2031	30/06/2033	9																										Т	T		1	

- Aligns with the EIC Project Schedule and UKRI/STFC profile restrictions
- Production starts 2027/2028
- Stave delivered to BNL 2030-2031

Summary

- The ePIC SVT is an extremely challenging project
 - Very aggressive material requirements
- It involves state-of-the-art (and beyond) technologies
- It builds on developments for ALICE ITS3, but is a project with its own challenges
- The UK is committed to deliver an critical part of the SVT, the OB staves
 - This constitutes about 1/3 of the silicon area
 - We will deliver components which will contain all components of the system (sensors, ancillary chips, FPC, cooling) and will be fully tested in the UK
 - We participate in all aspects of the project
 - The UK project is shared among several UK institutions
- However, the project is US driven, and we rely on them providing critical infrastructure
 - And we rely on the ALICE collaboration for design of and access to the MOSAIX chip
 - These exposures are out biggest project risks
- The other big challenge will be competing demands from LHC upgrades 10