ePIC Silicon Vertex Tracker OB Mechanics and Cooling

Adam Huddart

Introduction

• L3

- Inner 23 staves with a (centre of mass) radius of 269 mm
- Outer 23 staves with a (centre of mass) radius of 275 mm

• L4

- Inner 35 staves with a (centre of mass) radius of 421 mm
- Outer 35 staves with a (centre of mass) radius of 427 mm
- Equal overlap between sensors, overlap set to fit stave within 45-degree cone.
- L3 and L4 support structure identical except for difference in length/number of and type of LAS

OB L3 (6RSU segments)

Introduction

- Stave structure is internally hollow to form channels for coolant airflow
- Majority of the stave structure is carbon fibre/foam
 - Assembled in a single co-curing operation
 - Preform FPC C channel and Central I-Beam
 - Vacuum bagged in autoclave with removable internal tooling
- Sensors are adhesively mounted as "modules" consisting of 2 EIC-LAS, ASICs, Bridge FPC and a Kapton carrier
- Focused on L4
 - More difficult in terms of structural and thermal targets.

L3/L4 Stave Structure Overview

UK

Brief Overview of 1/4 Stave Prototype

- 1/4 of an L4 stave
 - One top one bottom module
- Preformed I beam and Kapton C Channel FPC Mock-ups
- SLA 3D printed end supports
- Multipart aluminium internal tooling
- 2 x 3mm rod runs through end supports, K9 foam cross braces & internal tooling to constrain and align stave components

Kapton Former Carbon Fibre I-beam Mould

Internal Formers

Brief Overview of 1/4 Stave Prototype

- 1/4 of an L4 stave
 - One top one bottom module
- Preformed I beam and Kapton C Channel FPC Mock-ups
- SLA 3D printed end supports
- Multipart aluminium internal tooling
- 2 x 3mm rod runs through end supports, K9 foam cross braces & internal tooling to constrain and align stave components

EIC-LAS Module

- Module Consists of:
 - 2 EIC-LAS
 - 2 ASIC
 - Bridge FPC
 - Kapton Carrier
- Modules are assembled on tooling and transferred with sensors held into a curved shape with vacuum tooling
- Module transfer tooling will be tested on quarter length stave

What we Need to Prove

- Structure is sufficiently stiff
 - Does not vibrate excessively due to internal airflow
 - Stave structure must withstand internal pressure requirements
- Electronics temperatures stay within their target temperature window
 - FEA and CFD studies have informed prototype stave design
 - For prototype testing we will use dummy heat loads, measure temperature of LEC & ASIC mock-ups on stave prototypes
- Planned manufacturing methods are achievable and resulting assembly is within required dimensional tolerances.

Proving Mechanical Stiffness

- Modal Analysis through FEA
 - Must include the mass and stiffness or all components (and bonding methods) of the stave
 - Target first mode of 100 Hz
 - FEA analysis can be validated using piezo driven vibration table
- Prove pressure capacity of stave through pressure testing
 - Difficult to model/predict adhesive bond strength when surfaces are not rigid.

Quarter Length Stave FEA – First mode 97 Hz

Quantitative Structural Results

• Mass estimate

Component	Volume mm^3	Density kg/m^3	QTY	Mass
Carbon Fibre Skin Upper	657.837628	1580	1	1.039383 g
Carbon Fibre Skin Lower	690.516991	1580	1	1.091017 g
Kapton C Channel	206.136635	1420	2	0.585428 g
Stave End Mounts	1462.491448	1210	2	3.539229 g
I Beam (Half)	322.104359	1580	2	1.01785 g
K9 Foam Block	1295.980514	200	6	1.555177 g
			Total Mass	8.828084 g

Measured: 8.95 g

eP

• 3pt bend test

UK

¹/₄ Stave Finite Element Analysis

Thermal Modelling

- FEA/CFD models of the L4 stave and ASIC
 - Detailed modelling of thermal pathway for ASIC cooling to optimise it's layout
 - L4 model to estimate required flow velocity, coolant outlet temperatures and pressure drop.
- Keeping LEC and ASIC close to 25°C significantly decreases thermal output

Cooling Requirements

- Target delta T between all LEC or coolant or RSU of 10K
- Coolant (low pressure) enters the stave at the end support and flows down central air channel in the stave
- High power density components LEC and ASIC in close thermal contact with K9 foam for enhanced cooling
 - Porosity (and strategically positioned holes) allows air to pass cross braces

Numbers used

OB and disks

Power [mW]	5 RSU			6 RSU		
	LAS	AncASIC	FPC	LAS	AncASIC	FPC
Nominal	1092	382 (35% of LAS)	218 (20% of LAS)	1224	428 (35% of LAS)	245 (20% of LAS)
Max	1689 (+55%)	759 (45% of LAS)	507 (30% of LAS)	1897 (+55%)	853 (45% of LAS)	569 (30% of LAS)

OB		# of LAS/stave	# of staves	Total # of LAS	disks	Total # of LAS
L4	5-RSU LAS	16	70	1120	5-RSU LAS	1104
L3	6-RSU LAS	8	46	368	6-RSU LAS	1312

Stave Temperature & Flow

epicUk

- L4 Stave Power
 - Nominal 27.1 W
 - Max 47.3 W
- L3 Stave Power
 - Nominal 13.2 W
 - Max 22.0 W
- Stave CSA = 260 mm^2
- Required flow velocity
 - Nominal 9,8 m/s (135 l/min)
 - Max 17.0 m/s (235 l/min)

L4 Coolant & LEC/ASIC Temperature

Air Supply

- OB airflow requirement 12500 21500 L/min (0.2-0.35 m³/s)
 - Equivalent flow velocity through 30cm (12") duct = 3-5 m/s
- Could we supply at pressure and locally reduce
 - 15 Bar through 16 x 10mm ID tubes
 - Flow Velocity 11 to 19 m/s
 - System will need to be well tested and tolerant to blockages to avoid rupturing staves

- Build another ¹/₄ Length stave for flow testing
 - Dummy heat loads to represent LEC, RSU and ASIC
 - Compare CFD studies with experimental results
- Feasibility of flat staves
 - Significantly easier for module assembly
 - Preliminary FEA studies show this has a limited effect on global stave stiffness
 - Further modelling of effect of internal pressure needed

Conclusions

- First ¹/₄ Stave prototype was both successful and informative
 - Static load testing showed similar (slightly better) stiffness than FEA
 - Redesign end supports & try with silicone intensifier to reduce imperfections in the carbon fibre skins.
- Second ¼ Stave will allow us to test modal response of stave and validate thermal models
- More extensive analysis of a flat sensor stave needed

Additional Slides

Local Stiffness of EIC-LAS

- Air velocities in flow channel will be high
 - High pressure drop/high inlet pressure
- Modelled assuming rigid mounting around glue locations
- Curvature reduces deformation due to internal pressure
- Sensor/module curvature of Ø180 mm results in micron level deformation due to 1000 Pa internal pressure

Pictures

J: Copy of Copy of 4mm Outer 8mm Inner Total Deformation Type: Total Deformation Frequency: 841.38 Hz Unit: m 27/09/2024 13:03

45.049 Max 40.043 35.038 30.033 25.027 20.022 15.016 10.011

5.0054 0 Min

Graph

1. 888.23

σταρh 🚽 □ Χ	Tabular Data
Animation 🛛 🕨 🛄 🛄 🛄 20 Frames 🔹 2 Sec (Auto) 🔹 🖾 🝳 🏭 🕂 🔊 🔤 🧱 ዙ 3 Cycles 🗛 🖕	Mode Frequency [Hz]
2.	1 1. 96.982 2 2. 163.75
799.81	3 3. 219.46 4 4. 799.81

J: Copy of Copy of 4mm Outer 8mm Inner Total Deformation 3 Type: Total Deformation Frequency: 219.46 Hz Unit: m 27/09/2024 16:37

13.552 Max 12.046 10.54 9.0344 7.5287 6.0229 4.5172 3.0115 1.5057 0 Min

Future Design Work

- Current Staves have a dia 180 mm curvature
 - Curved surfaces may be difficult for wire bonding
 - FEA studies suggest curvature has minimum impact on structure stiffness
 - Future iterations may use a flat sensor/module