

Inclusive DIS and kinematic reconstruction at the EIC

S. Maple

Inclusive Deep Inelastic Scattering

- In **inclusive scattering** no constraints are placed on the hadronic final state
- Events described using three related kinematic variables:

Inclusive DIS at the EIC

- The EIC provides a unique environment for the study of nucleons/nuclei with an Inclusive Physics programme:
 - High luminosity ep collider
 - Polarised proton/light nucleus collider
 - eA collider
- For unpolarised p/A measure F_2 , F_L $\sigma_r = F_2(x, Q^2) - \frac{y^2}{V_L}F_L(x, Q^2)$
- For polarised p/³He extract g_1

$$\frac{\Delta\sigma}{2} = \frac{1}{2} \left[\frac{d^2 \sigma^{\uparrow\downarrow}}{dx dQ^2} - \frac{d^2 \sigma^{\uparrow\uparrow}}{dx dQ^2} \right] \simeq \frac{4\pi\alpha^2}{Q^4} y(2-y) g_1(x,Q^2)$$

- Vary c.o.m. energy/polarisation → measure cross section vs x-Q²
- High precision x-Q² reconstruction required!

Electron-only Reconstruction

" "Inclusive" in hadronic final state \rightarrow <u>technically</u> only need to measure scattered electron

$$Q_e^2 = 2E_0 E_e (1 + \cos \theta_e)$$
$$y_e = 1 - \frac{E_e (1 - \cos \theta_e)}{2E_0}$$

- This requires a high quality reconstruction of the scattered electrons
- Additionally require efficient electron identification and separation from backgrounds

Current status of ePIC reconstruction software

- Reconstruction handled by ElCrecon
- Development ongoing, last year has seen:
 - Truth-seeded → Realistic tracking
 - Triplet seeding
 - Ambiguity resolution
 - Truth → Realistic calorimeter clustering
 - **Projection of tracks to calorimeter surfaces**
 - Matching tracks to ECAL cluster
 - Realistic Electron-finding

Electron finding

- Current implementation of electron finder:
 - Identifies electron candidate using an E/p cut
 - Selects highest momentum candidate
- More constraints will become available as software develops:
 - Cluster isolation
 - Ratio of energy deposited in E/HCAL
 - Cherenkov PID

Electron finding (truth vs "realistic")

- Resolution on inelasticity y used as performance metric
 - $\sigma(y)/y = RMS(y_{rec}/y_{true})$
- Electron-only reconstruction gives same result for truth/realistic finder
- Except in highest y bin
- High y = low scattered electron energy

 → selecting highest momentum
 candidate becomes inefficient

Electron-only reconstruction performance (tracks vs clusters)

- Reconstruct events from 18x275 GeV² 24.10.0 campaign
 - Realistic tracking, calorimetry, electron finding
- Two inputs required for electron-only reconstruction
 - $\mathbf{E}_{e}^{}, \mathbf{\theta}_{e}^{}$
- Take θ_{e} from tracking
- Take E_e from either the track momentum or energy of matched ECAL cluster

Electron-only reconstruction performance (tracks vs clusters)

- 1 < Q² < 10 GeV²
 - Energy from clusters outperforms tracks for most of the y range
 - Highest y bins show same y reconstruction performance

 → misidentified electrons dominate resolution
- 10 < Q² < 1000 GeV²
 - Performance similar for both approaches
- Q² highly correlated with θ_e → tracking poor for small angles (small B.dL)

Electron-only reconstruction performance (tracks vs clusters)

- 1 < Q² < 10 GeV²
 - Energy from clusters outperforms tracks at low Q²
 - As Q^2 increases, performances match \rightarrow limited by θ_e resolution
- 10 < Q² < 1000 GeV²
 - Q² resolution similar for both approaches
- Conclusion: E_e from clusters gives superior reconstruction at small θ_e (small Q²) → doesn't matter elsewhere

- Kinematics can be reconstructed using scattered electron alone
 - Electron method degrades at low y, and is impacted by initial/final state QED radiation
 - Approaches using the hadronic final state (HFS) may give better reconstruction
- Double angle method uses the ratio $p_{t,h}/\delta_h \rightarrow$ uncertainties associated with HFS energy measurement cancel out
- $\Sigma/e-\Sigma$ method do not directly use $E_0 \rightarrow$ resistant to ISR
- JB/hadron-only method (not shown) only method available for CCDIS

e-Σ method	Double Angle method	• $\mathbf{D} = \{\mathbf{E}_{e}, \boldsymbol{\theta}_{e}, \boldsymbol{\delta}_{h}, \mathbf{p}_{t,h}\}$ • Where $\boldsymbol{\delta}_{i}$ is $\mathbf{E} - \mathbf{p}_{i}$ sum of all
$Q_{e\Sigma}^2 = Q_e^2 \left y_{\Sigma} = \frac{\delta_h}{\delta_h + \delta_e} \right $	$y_{DA} = \frac{\alpha_h}{\alpha_h + \alpha_e} \left \alpha_{e/h} = \tan \frac{\theta_{e/h}}{2} \right $	particles in the Hadronic Final State: Σ $E_i(1 - \cos \theta_i)$
$x_{e\Sigma} = \frac{Q_{\Sigma}^2}{sy_{\Sigma}} \left Q_{\Sigma}^2 = \frac{p_{t,e}^2}{1 - y_{\Sigma}} \right $	$Q_{DA}^2 = \frac{4E_e^2}{\alpha_e(\alpha_e + \alpha_h)}$	 P_{t,h} is the transverse momentum of the HFS

- Evaluate performance with different reconstruction methods
 - Craterlake 23.12.0 (truth-seeding) \rightarrow currently inefficiency at low p, for realistic tracking)
- Q² resolution for electron/mixed methods converges for $Q^2 > -3GeV^2$
- JB method gives poor Q² resolution

- Resolution on y is more typical performance metric than Q²
 - Electron method wins at high y
 - DA method at low/mid y high Q²
 - E- Σ at low/mid y, low Q^2
- JB method gives good y resolution, but poor Q² resolution limits its usefulness in reconstructing x-Q²

 Choosing best method allows a reasonably fine binning scheme to be chosen while maintaining sufficient bin purity

Kinematic Fitting

- Multiple methods should not be required to achieve the best reconstruction
- If all inputs are used optimally, the best reconstruction should be achieved with a single method
- Using measured quantities $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$ an event-byevent kinematic fit can provide the best reconstruction and extract additional information: $\vec{\lambda} = \{x, y, E_v\}$

 $\mathbf{E}_{\mathbf{y}}$ is energy of an ISR photon

 For kinematic fit, can use a likelihood function based on knowledge of the detector resolutions:

$$P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi}\sigma_\theta} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}}} e^{-\frac{(P_{T$$

Kinematic Fitting – A Bayesian Approach

A Bayesian method can be applied in which basic features of the DIS cross section are encoded as a prior:

 $\frac{\text{Prior}}{P_o(\vec{\lambda})} = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{[1 + (1 - E_{\gamma}/A)^2]}{E_{\gamma}/A}$

- Use "Bayesian analysis toolkit" to calculate most probable values of set λ given measured quantities D
 - Values for x, y, E, taken from global mode

Fully Simulated ePIC pseudodata (No ISR)

- $\sigma_E = 0.055 \cdot p \oplus 0.45 \text{ in GeV}$ $\sigma_\theta = 72/p_t \oplus 2.8 \text{ in mrad}$ $\sigma_{\delta_h} = 0.25 \cdot \delta_h \text{ in GeV}$ $\sigma_{p_t^h} = 0.25 \cdot p_t^h \text{ in GeV}.$
 - Parametrised ePIC full sim resolutions
 - Pythia8 NCDIS
 - Craterlake 23.12.0
 - Q² > 100 GeV²
 - Ele from tracking

00

17

Fully Simulated ePIC pseudodata (No ISR)

- KF gives comparable y resolution to electron method at high y
- Loses at low y to DA method

ØC

- Correlations in HFS variables mostly due to energy fluctuations in calorimeters
 - Introduce extra term that reduces likelihood if p_t is overestimated and δ underestimated or vice versa:

$$P(\overrightarrow{D}|\overrightarrow{\lambda})_{corr} = P(\overrightarrow{D}|\overrightarrow{\lambda})_{uncorr} \frac{1}{\sqrt{2\pi}\sigma_{corr}} \cdot \exp{-\frac{(c-c^{\lambda})^2}{2\sigma_{corr}^2}}$$
$$c = \frac{\delta_{h,reco} - \delta_{h,true}}{\delta_{h,true}} - \frac{p_{t,reco}^h - p_{t,true}^h}{p_{t,true}^h}$$
-Correlation width σ_{corr} ~8%

Fully Simulated ePIC pseudodata (No ISR) – HFS Correlation

- Performance of KF recovered at low y!
 - Not yet perfect → but performance comparable to DA method achieved at low y, while maintaining electron method performance at high y
- Further improvements in likelihood possible for HFS resolutions and correlation parametrisations

20

Summary

- Wealth of opportunities for inclusive physics at the EIC
- Software for ePIC rapidly developing
 - Early version of electron-finder working well for low/mid y
 - To be updated as software progresses
- Inputs to kinematic reconstruction methods important for optimising reconstruction
 - Electron energy should be taken from calorimeters at low Q², at higher Q² tracker is also viable
- Methods using HFS information can improve resolution depending on conditions
 - Can achieve good resolutions if best method is chosen for each x-Q² bin
- Kinematic fitting method explored:
 - The DA method may outperform the basic (uncorrelated) KF at low y
 - Extending KF method to account for correlations in the HFS recovers this performance → delivers y resolution comparable to best method for each y bin

Smeared EIC pseudodata

- EIC DIS events generated with Djangoh
 - 18x275, Q²>1
- Smear by estimated resolutions
- $\sigma(\theta_e) = 0.1 \text{mrad}$
- σ(E_e) / E = 11% /sqrt(E) ⊕
 2%

23

• $\sigma(\delta_h) / \delta_h = 25\%$

Smeared EIC pseudodata (No ISR)

Smearing resolutions used as input for KF

$$P(\overrightarrow{D}|\overrightarrow{\lambda}) = \frac{1}{\sqrt{2\pi}\sigma_E} \exp{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \times \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} \exp{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{p_t^h}} \exp{-\frac{(p_t^h - p_t^{h\lambda})^2}{2\sigma_{p_t^h}^2}}.$$

 Stick to using prior 1 from <u>https://arxiv.org/abs/2206.04897</u>

$$P_0(\overrightarrow{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{1 + (1 - E_\gamma/E_0)^2}{E_\gamma/E_0}$$

- Compare y resolutions:
 - KF method meets or exceeds conventional

- Compare resolutions: no ISR to with ISR on
 - "Realistic" $\boldsymbol{\Sigma}_{_{tot}}$ cut of 31 GeV applied to remove high energy ISR
- Some, but not big, difference between observed resolutions
- Even for the electron method!

© (

Smeared EIC pseudodata (W/ ISR)

- Compare true and measured ISR energy distributions
 - Distribution well reproduced for higher E_v
 - Ratio within 30% for $E_v > 3 \text{ GeV}$
 - Within 10% for $E_v > 4 \text{ GeV}$
- Reasonable resolution

H1 Resolution on y

No Correlations

H1 Resolution on Q^2

No Correlations

H1 Resolution on x

No Correlations

H1 ISR reconstruction

H1 Data and MC (ISR On)

- KF reconstruction is applied with a likelihood function constructed from the following resolutions:
 - $\sigma(\theta_e) = 4mrad$
 - $\sigma(E_{e}) / E = 11\% / sqrt(E) \oplus 1\%$
 - $\sigma(\delta_{h}) / \delta_{h} = 13.5\%$
 - $\sigma(p_{_{T,h}}) / p_{_{T,h}} = 54\% / sqrt(p_{_{T,h}}) \oplus 4\%$
- No correlation term included for H1 studies
- Good agreement for pulls from data and Djangoh

$$g = \frac{D_{i,fitted} - D_{i,reco}}{RMS_{MC}}$$

© 0

H1 Data and MC (ISR On)

 Good agreement for E_y prediction by data and MC (Djangoh)

06

H1 Data and MC (ISR On)

Why identify ISR?

- ISR lowers the electron beam energy
 - Scattered electrons in low Q² events don't enter main detector
 - \rightarrow lower energy electrons are scattered at larger angles that may be within the detector acceptance
 - \rightarrow kinematic reach extended

Truth Smearing correlations

