Electron-Ion Collider UK gathering Event Generation for Photoproduction and Diffraction in *ep*

19th November 2024

Peter Meinzinger, Zürich University

based on [*Eur.Phys.J.C 84 (2024) 2, 178*], [*Phys.Rev.D 109 (2024) 3, 034037*], [*Eur.Phys.J.C* 84 (2024) 9, 894]

Sherpa v3

Motivation

The different regimes in *ep*

Matched at NNLO accuracy DIS event generation

[Phys.Rev.D 98 (2018) 11, 114013] using UN2LOPS matching

Photoproduction

Photoproduction

Clarifying the jargon

Photons can also look like hadrons!

Direct photoproduction Resolved photoproduction

The total cross-section

Weizsäcker-Williams a.k.a Equivalent Photon spectrum

In photoproduction, it is

$$
\sigma_{eP \to X} = \int dx f_{\gamma/e}(x) d\sigma_{\gamma P \to X} = \int dx f_{\gamma/e}(x) \left(d\sigma_{\gamma P \to X}^{(\text{direct})} + d\sigma_{\gamma P \to X}^{(\text{resolved})} \right)
$$

where

$$
d\sigma_{\gamma P \to X}^{(direct)} = \sum_{i} \int dx f_{i/P} (x, \mu_F^{(P)}) d\hat{\sigma}_{\gamma i} (\{p_k\}, \alpha_S(\mu_R), \mu_F^{(P)}, \mu_F^{(\gamma)})
$$

$$
d\sigma_{\gamma P \to X}^{(resolved)} = \sum_{ij} \int dx_1 dx_2 f_{i/P} (x_1, \mu_F^{(P)}) f_{j/\gamma} (x_2, \mu_F^{(\gamma)}) d\hat{\sigma}_{ij} (\{p_k\}, \alpha_S(\mu_R), \mu_F^{(P)}, \mu_F^{(\gamma)})
$$

NB: The dependence on $\mu_F^{(\gamma)}$ *cancels only in the total cross-section! F*

[Nucl.Phys.B Proc.Suppl. 79 (1999) 399-402]

Photon PDFs

The photon PDF obeys the evolution

$$
\frac{\partial f_{i/\gamma}}{\partial \log \mu_F^2} = \frac{\alpha_{\text{em}}}{2\pi} P_{i\gamma} + \frac{\alpha_S}{2\pi} \sum_j P_{ij} \otimes f_{j/\gamma}
$$

hence, the solution is of the form

$$
f_{i/\gamma}(x, \mu_F^2) = f_{i/\gamma}^{(\text{point}-1.)}(x, \mu_F^2) + f_{i/\gamma}^{(\text{hadron}-1.)}(x, \mu_F^2)
$$

- Four libraries interfaced to Sherpa
- $f_{i\ell y}^{(hadron-1.)}$ is fitted from non-perturbative input, c.f. Vector-Meson Dominance *i*/*γ*
- many available, but hard to find; mostly outdated
- \bullet differences of factor $\mathcal{O}(10)$
- including Multiple-Parton-Interactions between photon and proton

Photon PDFs

Conceptual difference to protons Going to NLO

At NLO, the distinction between Direct and Resolved breaks down

Is that a resolved photon? Or a real correction to a direct process?

Validation against HERA

Jet transverse energy in different pseudorapidity bins

Predictions for EIC

Transverse thrust and transverse thrust minor

Predictions for EIC

Distribution of *x^γ*

 is a proxy for *xγ* momentum ratio of parton to photon, defined as

$$
x_{\gamma}^{\pm} = \frac{\sum_{j=1,2} E^{(j)} \pm p_{z}^{(j)}}{\sum_{i \in \text{hfs}} E^{(i)} \pm p_{z}^{(i)}}
$$

γ

Photon PDF quality

The bottleneck in photoproduction phenomenology

- interfaced 11 photon PDF sets to SHERPA
- 1 million Leading Order events, scale and PDF varied independently

- Deviations up to 50%
- α_S value inconsistent with modern proton PDFs
- No error estimates

New fits are needed!

Diffraction

Diffraction

What we learned at HERA

- Process of type $ep \rightarrow eX + Y$, where $+$ denotes a separation in rapidity
- *Y* is an intact proton or a low-mass excitation
- Experimental identification relies on either large rapidity gaps or proton tagging

Diffractive processes made up 10% of the total cross-section at HERA Probing the hadron at low-scales, insights of transition into the nonperturbative region

Background to GPD measurements

Factorisation of diffraction

Introduction of Diffractive PDFs

Diffraction

Contributions to the cross-section

taken from [*Rev.Mod.Phys. 86 (2014) 3, 1037*]

Diffractive DIS

factorisation proven to hold

Diffractive Photoproduction

factorisation breaks down

window to diffraction at hadron colliders

Diffractive DIS Validation against HERA data

Diffractive DIS Validation against HERA data

Validation against HERA data

Diffractive Photoproduction

Validation against HERA data

Factorisation breaking has been observed at H1

ZEUS however does **not** support the evidence

Common explanations include:

- Soft rescattering, i.e. MPIs, between the photon and the proton
- Hadronisation effects
- Different phase space cuts
- DPDFs and their applicability; dependence on used data?
- Photon PDF and its $x_γ$ → 1 behaviour?

See, for example, [*Eur.Phys.J.C 66 (2010) 373-376*] and [*Eur.Phys.J.C 71 (2011) 1741*] All these do not suffice to explain the

differences and the factorisation breaking

Factorisation breaking

Fit of the data in diffractive photoproduction

Is the assumption of factorisation breaking only in resolved photoproduction valid?

Testing the hypothesis:

Fit direct and resolved component to data separately using full event simulation

This is accounting for 1.) NLO corrections, 2.) parton shower, 4.) hadronisation and 5.) bin migration

Factorisation breaking

Fit of the data in diffractive photoproduction

Is the assumption of factorisation breaking only in resolved photoproduction valid?

Conclusion: probably not! ZEUS actually in agreement with H1 in that factorisation breaking also in direct component!

Direct and resolved photons are indistinguishable at NLO

Suppression based on additional interactions between the photon and the proton might be the underlying reason for factorisation breaking But multiple interactions for "direct" photons poses a conceptual problem

Predictions for EIC

Leading-jet E_T and inclusive jet pseudo-rapidity in diffractive DIS

Predictions for EIC

Transverse thrust and thrust-minor in diffractive DIS

Fitted simulation for H1 (left) and EIC (right) Predictions for EIC

Photoproduction, H₁, $Q^2 < 2$ GeV²

Conclusion

Event generation for the EIC

low-

 $\mathbin{\vartriangle}$

Conclusion

 \mathcal{C}

 $\mathbin{\vartriangle}$

Event generation for the EIC

• First hadron-level matched NLO predictions for Photoproduction, Diffractive DIS and Diffractive Photoproduction in Sherpa

• Crucial for background studies and inclusive QCD observables at the EIC, for example in α_S extraction and jet physics

Photon PDFs are a bottleneck for precision photoproduction phenomenology

• Diffractive jet production and its factorisation breaking not yet understood, predictions/models need confrontation with data

