Structure Functions and Parton Densities from Inclusive EIC ep Data

EIC-UK Discussion Meeting 19 November 2024

Paul Newman (Birmingham)

Work done in collaboration with many colleagues (see attributions on following slides) and All members of the ePIC and formerly ATHENA collaborations

- Introduction
- PDFs from Inclusive EIC data
- Strong Coupling
- The Longitudinal Structure Function

Basic Deep Inelastic Scattering Processes

We will only be concerned with Neutral Currents here

Example Inclusive Neutral Current Data

Fixed target and (early) HERA data at a single Q^2 value (15 GeV²)

• Photon-exchange component of NC data measures

$$\frac{d\sigma}{dxdQ^2} \sim F_2 = \sum_q e_q^2 x \left(q + \overline{q}\right)$$

- Due to e_q^2 photon coupling, this mainly constrains **u** & **ubar**

... shape of quark densities already qualitatively apparent

QCD Evolution and the Gluon Density

H1 and ZEUS

 \rightarrow Fits to data to extract proton parton densities

Proton PDFs from HERA only (HERAPDF2.0)

Adding more data: Global PDF fits

Including LHC data brings:

Advantages: improve precision at mid and high x, exploit all available inputs

Caveats: use of data that may contain BSM effects, theoretical complexity (eg non-perturbative input), some incompatibilities between data sets

Global Fits and LHC Parton Luminosities

e.g. Comparisons between current global fits on LHC $q\bar{q}$ and gg luminosities

Immense recent progress, but still large uncertainties and some tensions between data sets and fitting methodologies

7

EIC Measurement Strategy

[S. Maple / ATHENA proposal]

- Choose reconstruction methods exploiting the hadronic final state as well as the electron to optimise (x, Q^2) resolutions throughout phase-space

- Exploit overlaps between data at different \sqrt{s} to avoid 'extreme' phase space regions

e-beam E	p-beam E	\sqrt{s} (GeV)	inte. Lumi. (fb $^{-1}$)
18	275	140	15.4
10	275	105	100.0
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

- Systematic precision estimated from experience at HERA, expected EIC detector performance, and guesswork

Simulations based on precision:

- 1 year of data at each beam config
- 1.5-2.5% point-to-point uncorrelated
- 2.5% normalisation

EIC PseudoData

 Q^2 (GeV²)

Impact of inclusive electron ion collider data on collinear parton distributions

Néstor Armesto⁶,¹ Thomas Cridge⁶,^{2,*} Francesco Giuli⁰,³ Lucian Harland-Lang,⁴ Paul Newman⁶,⁵ Barak Schmookler,⁶ Robert Thorne,⁴ and Katarzyna Wichmann²

[arXiv:2309.11269]

HERA data have limited high x sensitivity due to 1/Q⁴ factor in cross section and kinematic x / Q² correlation

> EIC data fills in large x, modest Q² region with high precision

Impact of EIC/ATHENA on HERAPDF2.0

Fractional total uncertainties in <u>DIS-only fit</u> <u>scenario</u> with / without simulated EIC data

(linear x scale)

... EIC will bring significant reduction in uncertainties for all parton species at large x

... most notable improvements for up quarks (chargesquared weighting)

EIC Impact relative to MSHT20 NNLO (as an example global fit)

0.96

0.97

0.98

0.99

1.01

1.02

1.03

1.04

1.0

1.00

Ratio

Taking α_s as an additional free parameter

Extraction of the strong coupling with HERA and EIC inclusive data

Salim Cerci^{1,a}, Zuhal Seyma Demiroglu^{2,3}, Abhay Deshpande^{2,3,4}, Paul R. Newman⁵, Barak Schmookler⁶, Deniz Sunar Cerci¹, Katarzyna Wichmann⁷

arXiv:2307.01183

<u>Precision high x EIC data</u> leads to α_s precision a factor ~2 better than current world experimental average, and lattice QCD average

Scale uncertainties remain to be understood (ongoing work)

- HERA data alone (HERAPDF2.0) shows only limited sensitivity when fitting inclusive data only.

- Adding EIC simulated data has a remarkable impact

 $\alpha_s(M_Z^2) = 0.1159 \pm 0.0004 \text{ (exp)}$

 $^{+0.0002}_{-0.0001}$ (model + parameterisation)

Another Approach to the Gluon Density: Longitudinal Structure Function

Prospects for Measurements of the longitudinal proton structure function F_L at the EIC

[Work in progress]

Javier Jiménez-López¹, Paul R. Newman², and Katarzyna Wichmann³

$$\frac{d^2 \sigma^{e^{\pm}p}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{xQ^4} \left[F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2) \right] = \frac{2\pi \alpha^2 Y_+}{xQ^4} \sigma_r(x, Q^2, y)$$
$$Y_+ = 1 + (1 - y)^2$$

- F_L is closely related to the gluon density: ~ $\alpha_s g(x,Q^2)$... so enthusiastically used in theory and PDF determinations

- Experimentally difficult, as only contributes strongly as $y \rightarrow 1$ and measured in combination with F2
- Standard experimental method is via 'Rosenbluth Decomposition' by measuring at multiple centre of mass energies, so fixed x and Q² correspond to varying y: Linear fit of cross section versus y²/Y₊

$$\sigma_r(x, Q^2, y) = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$
¹³

Previous Data

World data (most recently from JLAb experiments)

HERA - by varying E_p for short periods at very end of operations

Pseudodata

- EIC simulation based on 1 year's data in 5 different ep beam configurations

e-beam energy (GeV)	p-beam energy (GeV)	\sqrt{s} (GeV)	Integrated lumi (fb ⁻¹)
18	275	141	15.4
10	275	105	100
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

- Following previous studies for inclusive physics and PDFs, take 5 bins per decade in x, Q^2 at each beam energy

- Rosenbluth fits are very sensitive to uncertainties that are uncorrelated between different beam energies ...

Consider 2 uncertainty scenarios (truth likely to be somewhere in between)

1) 'Conservative': 3.9% (assumed in ATHENA PDF fits, worse than HERA)

2) `Optimistic': 1% (assumed in corresponding diffractive studies)

... randomly smear data points accordingly before performing fits

Rosenbluth Fits (Example Bins in Conservative Scenario)

$$\sigma_r(x, Q^2, y) = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

FL corresponds to the slope

Grey bands are 1σ confidence bands from fits

Results in Conservative Scenario

... shown for 3 different 'replicas' with different smearing of individual data Points

Results in Optimistic Scenario

... shown for 3 different 'replicas' with different smearing of individual data Points

Optimistic Scenario Compared with HERA

Averaging over x

Adding more Beam Energy Configurations

		$E_p [{ m GeV}]$					
		41	100	120	165	180	275
[GeV]	5	29	45	49	57	60	74
	10	40	63	69	81	85	105
E_e	18	54	85	93	109	114	141

ı.

 $F_L(9)$ adds the green-coded combinations $F_L(17)$ adds all except (10 GeV, 180GeV)

[Rosenbluth fits in example bin]

Adding more Beam Energy Configurations

		$E_p [\text{GeV}]$					
		41	100	120	165	180	275
[GeV]	5	29	45	49	57	60	74
	10	40	63	69	81	85	105
E_{e}	18	54	85	93	109	114	141

ı.

 $F_L(9)$ adds the green-coded combinations $F_L(17)$ adds all except (10 GeV, 180GeV)

The F_L world in 2045? (5 configs only)

