

1

 Reaction Aware Dataframes
Derek Glazier

University of Glasgow

Electron Ion Collider UK Gathering
University of Birmingham
18-19th November 2024

2

Preamble

EXPERIMENTAL::

The point, for me, was to see if

 RDataFrame could be used in complex analyses
 For example, in analysing multi-final state
 event generators

 This could be made simple and “user friendly”

 This could be extended to ePIC data

The point today is to encourage others to try out
RDataFrame for ePIC analysis

3

Summary

● What are dataframes

● Why use a dataframe instead of a for loop in a large
Root script ? Or a more Object Orientated approach

● How can I use a dataframe
● Simple things
● More complicated things : functions and functors

● What does “reaction aware” mean ?

● RAD with Pythia

● RAD with benchmarking

4

What is ROOT RDataFrame

https://indico.fnal.gov/event/23628/contributions/241029/

5

What is RDataFrame

Construct → Transform → Results
Use strings!

Use modern C++!

6

RDataFrame Actions

Plus lots of other stuff….

For my analysis I want to take reconstructed data
and create a TTree of high level physics info
for my reaction

7

EIC Tutorial with Python (I)

8

EIC Tutorial with Python (II)

9

EIC Tutorial with RDataFrame

10

ROOT::RVec<>

Basically wrapper for std::vector<>
ROOT gives some additional utiltities

- implicit looping (like numpy arrays)
RAD gives some more
https://github.com/dglazier/rad/blob/master/include/RVecHelpers.h

ePIC data in RDataFrame will be contained in RVecs
These will be the arguments given to functions

Note best to pass in const references (&)
Keeps data safe and prevents unecessary copy

https://github.com/dglazier/rad/blob/master/include/RVecHelpers.h

11

Don’t use TLorentzVector
https://root.cern.ch/doc/master/classTLorentzVector.html

Main user difference using external functions not class methods

12

Note on usage

Rad keeps the last defined RNode as a datamember
Can be accessed with rad.CurrFrame()

Returns Rnode (df1)
with define
applied

* I prefer this

13

PODIO Data Format

Plain-Old-Data I/O, aka PODIO
avoid deep-object hierarchies

To both improve runtime performance and
simplify the implementation

Support for inter-object relations

For Example HepMC3 root file shows :

particles.pid : Int_t pid[particles_]
particles.status : Int_t status[particles_]
particles.mass : Double_t mass[particles_]
particles.momentum.m_v1 : Double_t m_v1[particles_]
particles.momentum.m_v2 : Double_t m_v1[particles_]
...

14

ePIC Data Format

O(4000) branches !

ReconstructedParticles.energy : Float_t energy[ReconstructedParticles_]
ReconstructedParticles.momentum.x : Float_t x[ReconstructedParticles_]
ReconstructedParticles.charge : Float_t charge[ReconstructedParticles_]
ReconstructedParticles.mass : Float_t mass[ReconstructedParticles_]

ReconstructedParticleAssociations.recID : UInt_t recID[ReconstructedParticleAs_]
ReconstructedParticleAssociations.simID : UInt_t simID[ReconstructedParticleAs_]

MCParticles.momentum.x : Float_t x[MCParticles_]
MCParticles.charge : Float_t charge[MCParticles_]
MCParticles.mass : Double_t mass[MCParticles_]

And many more ...

15

Injecting algorithms

Functions and functors

If your calculation depends on event data use a function
These can be defined in some header or in a C++ lambda
Event data is passed in as arguments

If your calculation also depends on some parameters use
a functor

A functor is an instance of a class with a function and
parameters kept as data members

16

ePIC truth matching

Optional analysis strategy :

Use ReconstructedParticles and MCParticles branches
Map these to “rec” and “tru” types of variables

Filter tru indices for gen_stat == 1 (removes a lot!)
Loop over tru, look for rec and link to tru index
Filter/reorder all other columns to sync with new tru

Can now operate on real matched reaction when
reconstructed particles exist
Calculations automatically performed for both rec and tru
Resolutions can be determined for all variables

17

Installation

Header only
Compilation at run-time via standard ROOT scripting(cling)

Download from github (CURRENTLY NOT STABLE)

git clone https://github.com/dglazier/rad

Add the include directory to you ROOT_INCLUDE_PATH

setenv ROOT_INCLUDE_PATH /to/where/is/rad/include

Structure : Some classes to configure RAD dataframes
 Some functions/functors to calculate stuff

https://github.com/dglazier/rad

18

Reaction Aware

*γ

p

e
e’

Meson (Top)

Baryon (Bottom)

Photon

Production

To analyse a reaction in general we need to :
● Identify final state particles (Filter)
● Associate them with Top and Bottom vertices (Define)
● Calculate Photon Kinematics
● Calculate Production Kinematics
● Calculate Top/Bottom Intermediate states
● Calculate Top/Bottom Decay Kinematics

19

How is it Reaction Aware

The method is to identify the indices of each particle
in the data vector

These are then stored in a reaction Map
This can change event-to-event
Given an index helper functions create 4-vectors etc.
Can then be used in standarised kinematic calculations

Can use any
complicated algorithm

I know my pion is 2nd

In particle list

20

From indices to 4-vectors

User code :

Inside RAD function definition :
Returns 4-vector sum of e-, e+, π+

Index known as MCmatched

react → the reaction map, stores particle indices
MesonsIdx is the position in react where meson
indices are stored

21

Inside RAD Kinematic Function

react → the reaction map, stores particle indices

MesonsIdx is the position in react where meson
indices are stored

Vectors of momentum
components

Uses react for beam and
scattered e- indices

22

Inside RAD Kinematic Function

React → the reaction map, stores particle indices

MesonsIdx is the position in react where meson
indices are stored

Vectors of momentum
components

23

Particle Creator

As well as reconstructed particles, we also need
to manipulate intermediate or missing particle 4-vectors

ParticleCreator adds these momentum components to the
reconstructed components vectors and generates index
for the new particle

Sum – sum 4-vector of given particles
Diff – subtract 4-vector of given indices
Beam – define a fixed 4-vector for beam particle
Miss – subtract given particles from sum of beams

24

User code configure stage

Final state particles

decaying states
J/ψ → e- + e+
Z → J/ψ + π

e-’
e-
e+
π
n

Missing particle : n = beams- e’-Z

New name{Particles to sum}

25

User code kinematics stage

Call predefined rad::rdf functions for kinematics

26

More complicated functor

Undo ePIC afterburner
Applied to each particle
automatically

Functors need operator()

27

Going further : multiple reactions

Maximise efficiency : 1 data read, multiple reactions
Become less read bound

- Make the most of multi-core processing
- Just need ROOT::EnableImplicitMT(8);

Difficult to do in a single script for loop

Here relatively simple :
Prior to indicing take copies of the RAD frame
Configure each for their own reaction and observables
Lazy execute all at once!

* note : currently tree snaphot is not lazy so this only
 works for histogramming type analysis

28

Automation : ReactionChannel

Utility class to do the index configuration
- just requires meson and baryon indices

Can use to analyse Pythia data, HepMC or ePIC

e.g M→ π-π+ B→ pπ0

RAD dataframe

29

Multiple channels code

30

ePIC Benchmarking

I need to make some benchmark tests for the lowQ2 Tagger
- Use the Pythia ReactionChannel Framework
- Use ePIC common benchmark format
 https://eicweb.phy.anl.gov/EIC/benchmarks/common_bench

Need to produce a json file :

https://eicweb.phy.anl.gov/EIC/benchmarks/common_bench

31

ReactionBenchmarks

Class to automate benchmarking with RAD
Requires truth matching

User defines histograms for observables
For each observable ReactionBenchmarks :
● generates tru and rec distributions
● generates acceptance histograms
● generates resolutions histograms
● produces plots on configurable canvases
● writes common_benchmark tests in json

Supplement : common_benchmark/benchmark_against.h
- Defines test target to be result from

previous analysis

32

Coding ReactionBenchmarks
Take rad dataframe
From slide 28

Create benchmark
Store final state pdgs

Must use previously
defined variables

Can use particle momentum

Let ReactionBenchmarks
Create all histograms
Store in vector for now
Must create all
reactions and benchmarks
first to use parallel
lazy execution

33

Distributions
Pythia6 ; ePIC simulation/reconstruction; 10x100; lowQ2 e- ; π+π-

34

Efficiencies

35

Resolutions

36

common_benchmarks

37

Conclusions
RDataFrame offers a appealing framework for data analysis

Collaborations can build a common scheme on top of this
- for example using edm4hep, edm4eic

Here we only use ROOT dependencies (simple to install)

We make the dataframe “Reaction Aware” by defining indices
User coding is minimised
Kinematic functions are reusable
Truth Matching is automated
Many reactions can be run in parallel on multi-cores

 But the code behind the scenes is complicated and
difficult to develop...

38

Title

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

