Update on Flexible Printed Circuits (FPCs)

19/11/2024

M.Borri on behalf of WP3 Electrical Interfaces

Outline

Low TRL OB prototypes: recap.

Status of assembly.

Test plan.

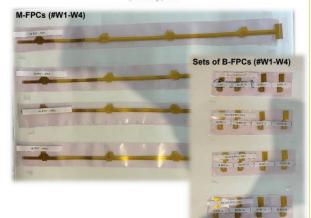
Conclusion and future work.

Low TRL OB prototypes: time-line

- Defined requirements:
 - **18/03/2024**
- Design review:
 - **1**6/05/2024
- Prototypes delivery:
 - **08/10/2024**
- Testing:
 - To assemble to interface cards;
 - To distribute and test;

Issue so far:

and then a Purchase Order needs to be sent by the Buyer to the Seller as a confirmation of quotatio


Low TRL OB prototypes: delivery

ePIC SVT L4 FPC prototypes and sets of FPCs shipped to STFC DIL

Assembled multilayered multicomponent ePIC SVT L4 FPC prototypes

L4 FPCs (#1-4)

Sets FPCs for ePIC SVT L4 FPC prototypes

Delivered FPCs:

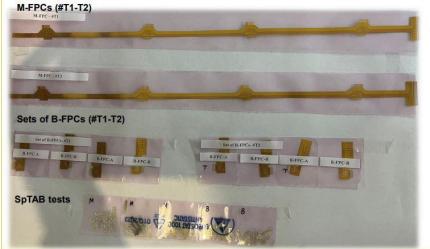
- 4 prototypes of assembled ePIC SVT-L4 FPC
- 4 sets of FPC prototypes for ePIC SVT-L4 FPCs (4 M-FPCs+ 16 B-FPCs)

October 10, 2024

ePIC SVT WP3 Electrical Interfaces Meeting

viatcheslav.borshchov@cern.ch, ihor.tymchuk@cern.ch

Note: all FPCs are packed in ESD protective film packages


A lot of details in the design...

I.Tymchuk:

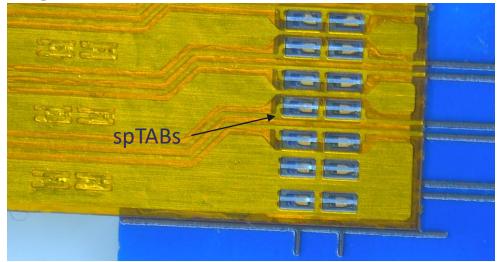
30 masks in total were required for M-FPC + B-FPC-A + B-FPC-B; i.e. 10 photomasks for each FPC were required; (usually a 2 layer FPC requires up to 6 masks)

Additional (test) FPCs shipped to STFC DIL

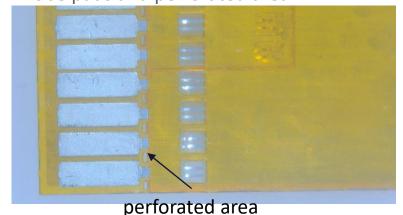
Additional Test FPCs delivered for SpTAB tunning, test procedure/fixture tunning etc.

Additionally delivered:

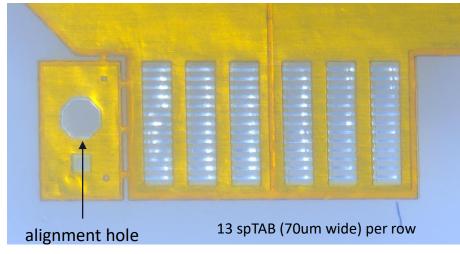
- ✓ M-FPC - 2pcs
- √ B-FPCs - 2 sets (4x2 B-FPCs)
- √ SpTAB test elements (~70pcs)

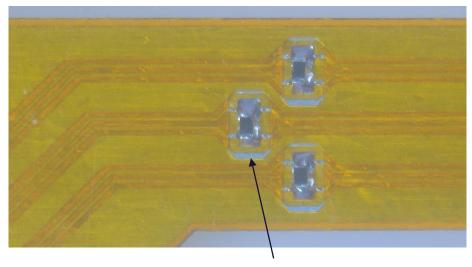

Important notes:

- ✓ M-FPC OK (only a bit imperfectness in interlayer aligning presents)
- ✓ B-FPCs 6 pcs are OK, only 2pcs are NOK (marked by letter T)



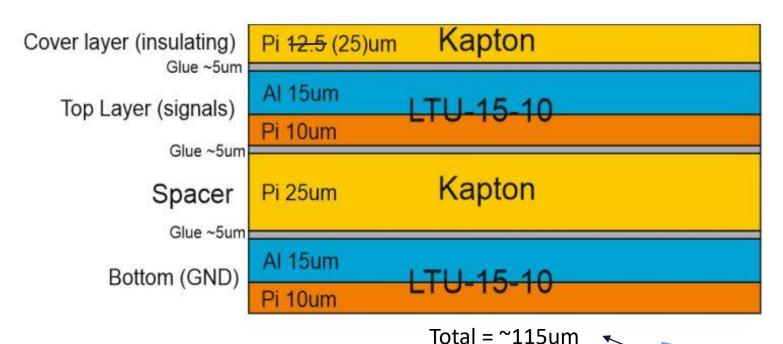
Low TRL OB prototypes: visual inspection at DL


Alignment of FPC to interface PCB


Probe pads and perforated area

Current in/out spTABs at joint with bridge FPC

0201 components



voids?

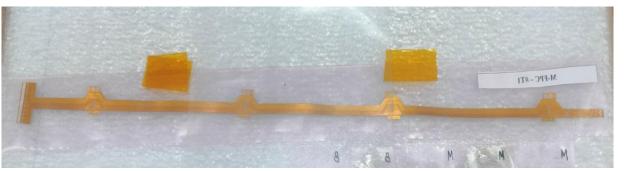
Low TRL OB prototypes: visual inspection at DL

Schematic cross-section of M-FPC and B-FPC

Difference ~3.6um

Measured 111.4um

Low TRL OB prototypes: interconnection


- Interconnection required in order to enable electrical testing;
- The FPCs are interconnected to interface cards;
 - This improves signal transmission to/from the FPC;
- We start simple:
 - M-FPC to interface cards;

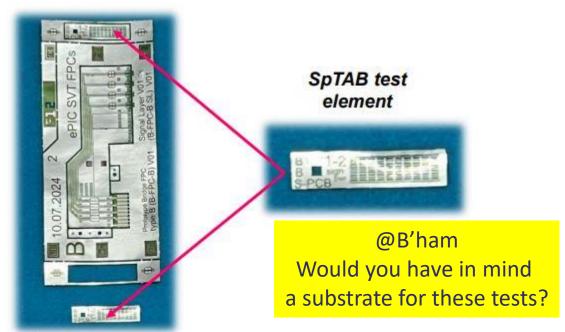
Sketch of the main FPC (M-FPC) to interconnected to interface cards

marcello.borri@stfc.ac.uk

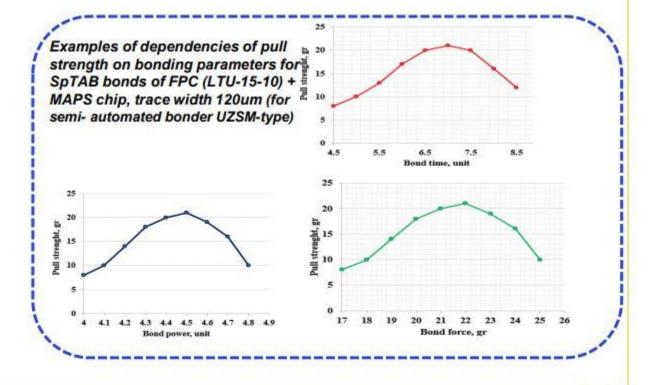
Low TRL OB prototypes: interconnection

- Selection of interconnection site, options:
 - RAL
 - Oxford
 - L'pool (only briefly)
 - B'ham ✓
- From July 2024:
 - Discussed details of the job;
 - Visited sites;
 - ... but because we could not estimate a delivery date, nothing tangible happened. (Pressure from other jobs/projects)
 - Converged on the selection of the interconnection site later than expected.

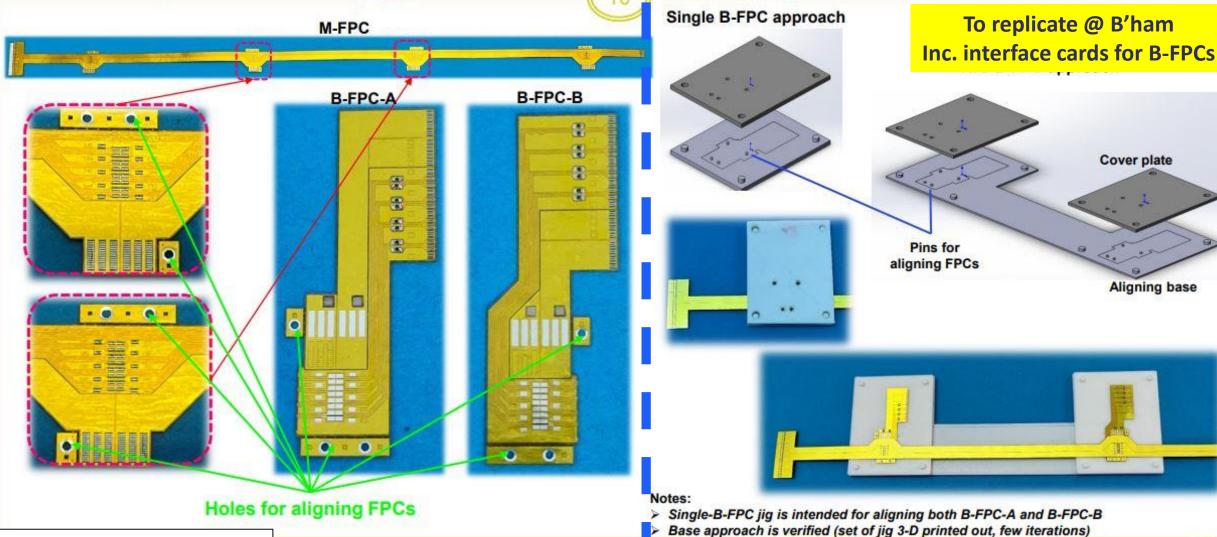
Wedge required to spTAB prototypes to interface PCBs



Ordered by J.Glover, estimated delivery ~11/12/2024.

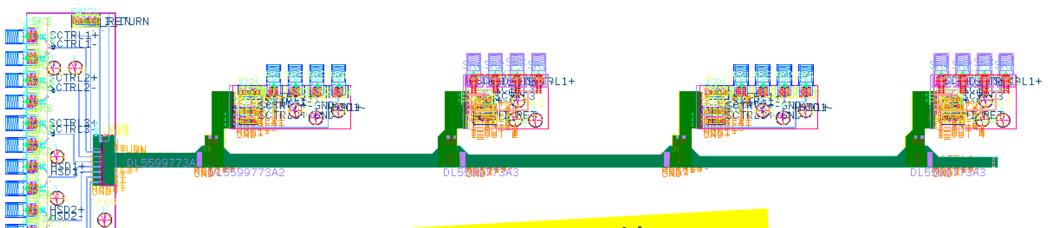

SpTAB test elements for investigating/checking bond parameters

- For SpTAB need to be done investigating and verifying bonding parameters
- For this purpose special bond test elements are using (same trace width as in bond area)
- Bond test elements are made of same material as object for bonding (top and bottom layers of multilayered flex)
- Bond parameters need to be investigated/verified for each/different bonder


Note:

typically SpTAB test elements are delivering together with FPCs

ihor.tymchuk@cern.ch


Possible approach to aligning FPCs and 3-D printed jig for assembling ePIC SVT FPC

Further down the line to try in-house spTAB bonding of B-FPCs to M-FPCs

viatcheslav.borshchov@cern.ch,

Low TRL OB prototypes: interconnection further steps

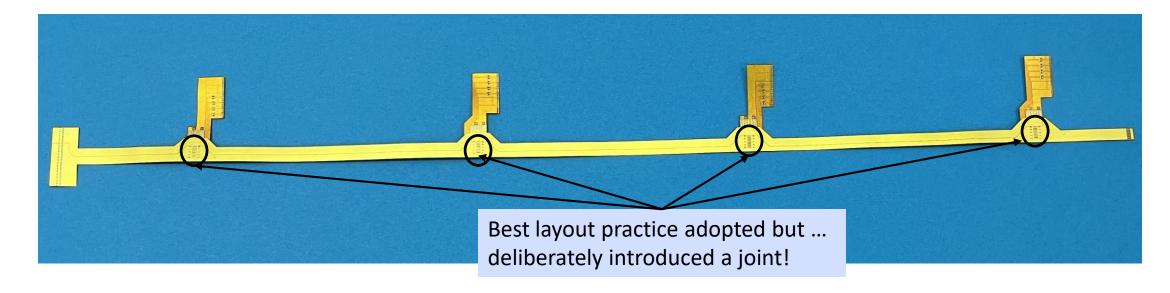
ToDo - difficult!

B'ham to propose assembly sequence?

Example

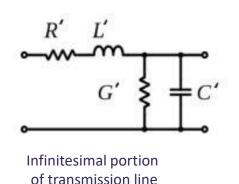
1- B-FPC to B-int'face-PCB 2- B-FPC to M-FPC

3- M-FPC to M-int'face-PCB


What do we test for: signal and pwr integrity

- Signal integrity.
 - The ability to propagate signals without distortions
- Factors that contribute to signal integrity degradation:
 - Reflections
 - Impedance discontinuities
 - Cross talk
 - Mutual parasitic capacitance & inductance
 - Skew
 - Propagation delays
 - Jitter
 - Non-uniform impedance, crosstalk, interference, and power supply noise
 - Signal attenuation
 - Losses caused by conductive and dielectric energy dissipation.

- Power integrity
 - Reduced Noise pick up
 - Decoupling capacitors (Equivalent Series Resistor)
 - Coherent grounding strategy over the Power Distribution Network
 - Acceptable IR drop (and related FPC power consumption)


Signal integrity: layout dependent

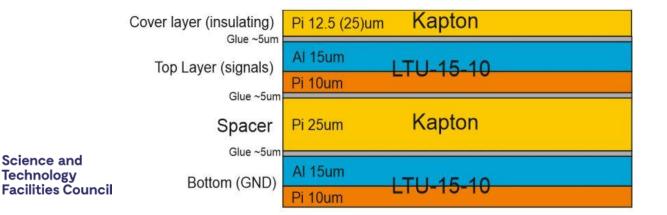
The most important cause of signal integrity issues in a PCB is faster signal rise times.

	Signal name	Type	Comment	Coupling	Standard	lpGBT eLink	Rate
	slow ctrl clk (down)	AC	from lpGBT to AncASIC	Capacitive	CERN Low Powering Signal (CLPS)	clock-eLink	80 Mb/s
	slow ctrl write (down)	AC	from lpGBT to AncASIC	Capacitive	CERN Low Powering Signal (CLPS)	output-eLink	80 Mb/s
	slow ctrl read (up)	AC	from AncAsic to IpGBT	Capacitive	CERN Low Powering Signal (CLPS)	input-eLink	160 Mb/s
	data	AC	from AncAsic to VTRX+ (1 diff line/AncASIC)	Capacitive	CERN Low Powering Signal (CLPS)	N/A	5.12 Gb/s (or 10Gb/s)
V	voltage supply	DC	Max: (2.5V/AncASIC) * (4 AncASIC)	Direct	10% Vdrop for 2.5V/LAS, is it OK?	N/A	N/A
	current	DC	2.5 A (total per AnASIC)	Direct		N/A	N/A

Transmission lines – signal attenuation

Science and

Technology


KCL + KVL
$$\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t} \\ \frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$$

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

Schematic cross-section of M-FPC and B-FPC

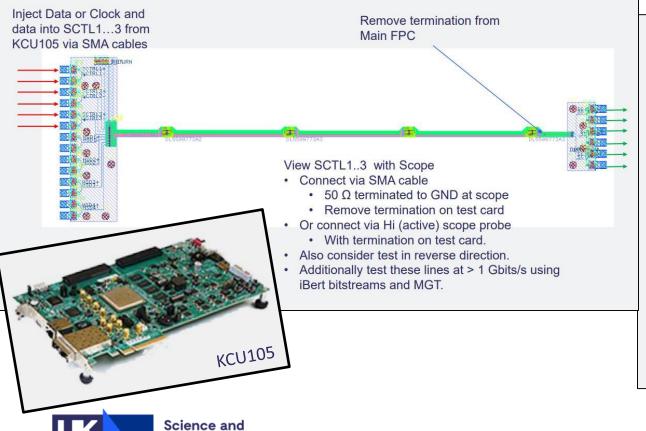
Let $y = \alpha + i\beta$ or $\alpha + i(2\pi/\lambda)$

y = complex propagation constant

a = attenuation constant (nepers/unit length)

 β = phase constant (radians/unit length)

 $\lambda = wavelength$

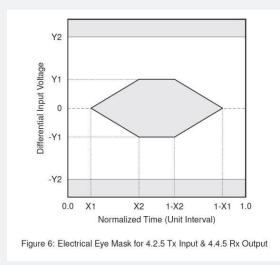

 ω = angular frequency (radians/second)

$$\alpha = \alpha_C + \alpha_D + \alpha_G + \alpha_R$$
 $\alpha_C = loss$ due to metal conductivity
 $\alpha_D = loss$ due to dielectric loss tangent
 $\alpha_G = loss$ due to conductivity of dielectric
 $\alpha_B = loss$ due to radiation

Testing – first tests to do at DL

Main FPC only, slow control

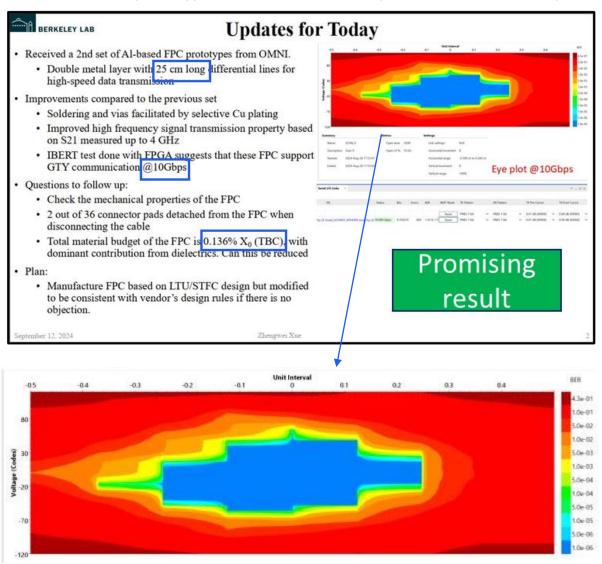
Technology Facilities Council

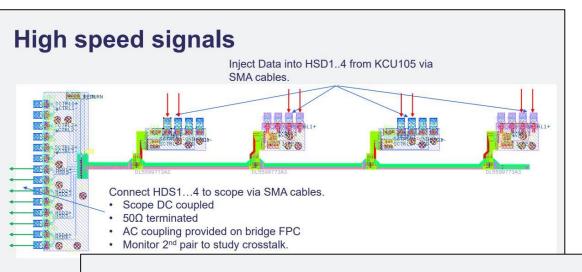

Equipment

EK-U1-KCU105-G	https://www.digikey.co.uk/en/pro ducts/detail/amd/EK-U1- KCU105-G/5080514	KCU105	
CCSMA-MM-SS402-24	https://www.digikey.co.uk/en/pro ducts/detail/crystek- corporation/CCSMA-MM- SS402-24/2137809	24 inch cable.	
CCSMA-MM-SS402-36	https://www.digikey.co.uk/en/pro ducts/detail/crystek- corporation/CCSMA-MM- SS402-36/2137810	36 inch cable.	
ADP-SMAF-BNCM	https://www.digikey.co.uk/en/pro ducts/detail/linx-technologies- inc/ADP-SMAF-BNCM/9826665	BNC to SMA adapter	

High speed data & first tests

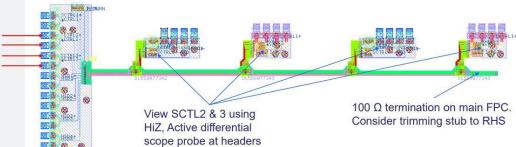
VTRx+ TX input Eye mask

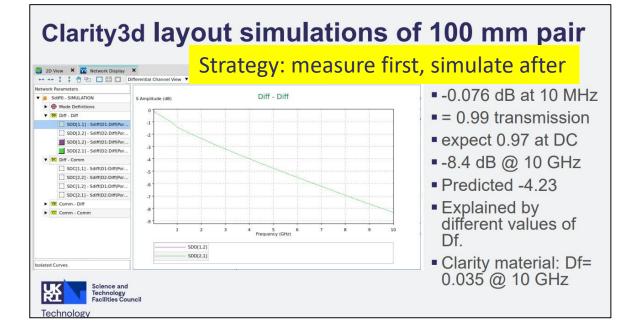

Specification	Value
X1 @ UI=97.66ps	10.7 ps
X2	30.3 ps
Y1	95 mV
Y2	350 mV


Technology

LBNL results w prototypes from Omni Circuits (dielectric is ArlonEmd)

... conversion to Volt and time possible.

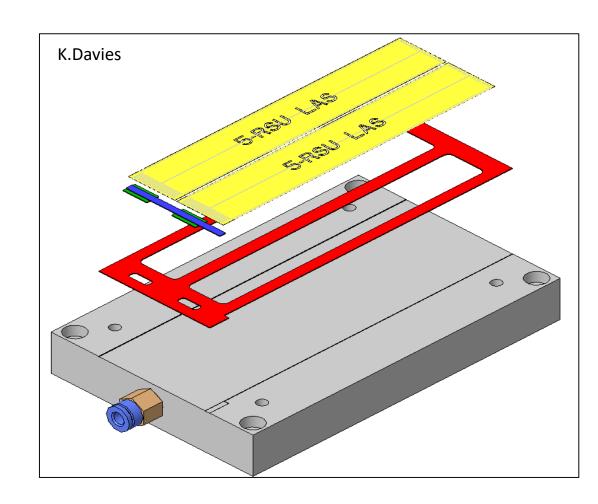

Further testing



Slow Control Clock and TX data SCTL2 & 3

Inject Data or Clock and data into SCTL2...3 from KCU105 using SMA cables

Science and Technology Facilities County



- To rent higher spec equipment:
 - Lecroy WaveMaster8330HD 33GHz scope (33 GHz, 12 bits, 160 GS/s, 200 Mpts)
 - Lecroy WavePulser40iX 40GHz TDR instrument
- Discussed first month free of charge with supplier.

stfc.ac.uk

Conclusion

- Characterization of FPCs will start in the new year.
- Valuable learning from the design and procurement stage.
- Currently learning on how to spTAB the FPCs to their interface cards.
- Starting to work on the definition stage of the next FPC iteration (module)

