ePIC SVT – Simulation Updates and Next Steps

Sam Henry, Tuna Tasali, Long Li

- Simulation software and the SVT outer barrels
- Simulations with Fun4All (Long Li)
- Converting CAD to DD4HEP (Tuna Tasali)
- Material thickness mapping
- Update to epic simulation geometry
- Tracking performance studies
- Next steps

ePIC Simulation Software

Repositories:

EPIC Geometry: <u>https://github.com/eic/epic</u> EICRecon: <u>https://github.com/eic/EICrecon</u> EDM4eic: <u>https://github.com/eic/EDM4eic</u> DD4hep: <u>https://github.com/AIDAsoft/DD4hep</u>

Tutorials:

https://www.youtube.com/@eicusergroup1532 https://eic.github.io/tutorial-setting-up-environment/ https://eic.github.io/tutorial-geometry-development-using-dd4hep/ https://eic.github.io/tutorial-simulations-using-ddsim-and-geant4/ https://eic.github.io/tutorial-jana2/ https://eic.github.io/tutorial-analysis/ https://github.com/cipriangal/eicGenTutorials

Mattermost forum: <u>https://chat.epic-eic.org/</u> (helpdesk channel) Software and computing mailing list: <u>https://lists.bnl.gov/mailman/listinfo/eic-projdet-compsw-l</u>

eic-shell

SVT Simulation – first results with Fun4All

https://indico.bnl.gov/event/24804/contributions/97254/attachments/57706/99121/ePIC_SVT_s imulation_F2F_Oxford_241003.pdf

SCHOOL OF UNIVERSITYOF PHYSICS AND ASTRONOMY BIRMINGHAM See slides by Long Li: The simulation of ePIC-SVT detector based on Fun4All Long LI on behalf on EIC-UK WP1 **Oxford University** 03/10/2024

Geometry description of Tracking system in Fun4All

Name	radius [mm]	X ₀ [%]
Beam pipe	31	0.22
SVTIB	36, 48, 120	0.05
SVTOB	267, 397 LS1	0.25, 0.55
	222, 440 LS2	
	272, 424 LS3	
MPGD	550, 725	0.6,1.2
TOF	646	0.8

AC-LGD TOF

- Generic beam pipe for EIC in Fun4All
- Construct SVT detectors in Geant4 with 2 potential OB layout
- Construct MPGD & TOF detector in Geant4 with default parameters in <u>eic-shell</u>

EIC-UK WP1 F2F Oxford

Geometry description of Curved OB layers

"CentreH" = 8.5 mm	"CentreH_half" = "CentreH" / 2 (= 4.25 mm)
"EdgeH" = 3.51 mm	"EdgeH_half" = "EdgeH" / 2 (= 1.755 mm)
"CurveDiam" = 180.23 mm	"CurveRad" = "CurveDiam" / 2 (= 90.115 mm)
"L4Staves" = 70	"L4Staves_half" = "L4Staves) / 2 (= 35)
"L3Staves" = 46	"L3Staves_half" = "L3Staves) / 2 (= 23)
"L4Rad" = 424 mm	
"L3Rad" = 272 mm	
"RadOffset" = 3 mm	
" HU_Pads " = 325 um	
"HU_RO" = 200 um	I
"HU_Bias" = 60 um	\land
"HU_Width" = 9.782 mm	$\langle \rangle$
"RSU_RO_and_Pads" = "HU_Pads" + "HU_RO" (= 525 um)	
"RSU_Bias" = "HU_Bias" * 2 (- 120 um)	
= "HU_Width" - ("HU_Pads" + "HU_RO" + "HU_Bias") (= 9.179 mm)	00
"ActiveWidth_centre" = 9.1779 mm	
"ActiveWidth_edge" = 9.0743 mm	A. I.
	"CentreH" = 8.5 mm "EdgeH" = 3.51 mm "CurveDiam" = 180.23 mm "L4Staves" = 70 "L3Staves" = 46 "L4Rad" = 424 mm "L3Rad" = 424 mm "L3Rad" = 272 mm "RadOffset" = 3 mm "HU_Pads" = 325 um "HU_RO" = 200 um "HU_Bias" = 60 um "HU_Bias" = 60 um "HU_Width" = 9.782 mm "RSU_RO_and_Pads" = "HU_Pads" + "HU_RO" (= 525 um) "RSU_Bias" = "HU_Bias" * 2 (- 120 um) = "HU_Width" - ("HU_Pads" + "HU_RO" + "HU_Bias") (= 9.179 mm) "ActiveWidth_centre" = 9.1779 mm "ActiveWidth_edge" = 9.0743 mm

https://indico.bnl.gov/event/23878/contributions/93119/attachments/55368/94740/24-06-19_ePIC_SVT_OB_JGlover_r1.pdf

EIC-UK WP1 F2F Oxford

Results with modified OB Geometry

SVT – standard epic geometry

- Simple model of L3, L4 barrels
- Flat staves
- Layers of silicon, carbon fibre, aluminium to give material thickness
- X/X0 = 0.25% (L3)
- X/X0 = 0.55% (L4)
- Tracking performance benchmark analysed by Shyam Kumar
- Tracking group now wish to update geometry and freeze it to run simulations for TDR

ePIC SVT – detailed geometry from CAD files

- Project work by Oxford intern student Tuna Tasali
- (Mostly) automated process to convert CAD files to DD4HEP geometry

https://indico.bnl.gov/event/23274/contributions/96308/attachments/57308/98404/InternationalPresentation_CADDesignsIn_DD4Hep.pptx

ePIC SVT – detailed geometry from CAD files

ePIC SVT – Material Thickness

Using epic/bin/g4MaterialScan_to_csv script by Chao Peng

Lower baseline thickness than standard geometry

Average ratio: 0.85

Average ratio: 0.42

L3

L4

Summary / Change to epic geometry

- Simulations show material thickness in CAD design is significantly less than in design specs and standard epic geometry
- Simulations show similar thickness for L3,L4
- Is this reliable? There are bugs, but it seems about right
- But doesn't include glue, bonding wires, additional support material ... Will this be significant?
- Options:
 - Reduce thickness of aluminium layer in epic geometry to match average X/X0 of detailed simulation?
 - Reduce thickness of L4 aluminium layer to give X/X0=0.25% (to match L3)?
 - Keep the existing model?

ePIC SVT simulation test results

Using tracking performance benchmark script by Shyam Kumar, epic_craterlake_tracking_only.xml https://github.com/eic/detector_benchmarks/tree/master/benchmarks/tracking_performances

Run time: 92±25 minutes

Run time: 10±3 minutes

Running ddsim and eicrecon on 10,000 events

ePIC SVT simulation test results

Using tracking performance benchmark script by Shyam Kumar, epic_craterlake_tracking_only.xml https://github.com/eic/detector_benchmarks/tree/master/benchmarks/tracking_performances

Run time: 92±25 minutes

Run time: 10±3 minutes

Running ddsim and eicrecon on 10,000 events

Overlap Study (in L3 only): deltap/p

Pion momentum: 0.5-10GeV/c

Overlap Study (in L3 only): dca_z

Overlap Study (in L3 only): dca_T

Sensitive Area Study (both layers)

ePIC SVT Simulations: Next Steps

- Debug code
- Index CAD design files with version numbering
- Further investigation of tracking performance on detector design
- Create more accurate simplified geometry for routine simulations
- When do we need detailed geometry?
- Further develop techniques to convert CAD files to DD4HEP