

To include names

Luminosity projections for HL-LHC

Summary of the luminosity model

Iterative algorithm that calculates evolution of beam & machine parameters every 5 minutes during collisions [1], [2]:

Evolution of beam & machine parameters for ATLAS/CMS in a nominal fill

Baseline

		T f	To mention that there are not enough days in intensity rampup+proton physics for 2029+1 to ramp to 1 8e11 if we tart with 1 4e11 intensity ramp up plots in												
Run	Year	t Efficien-,	the backup									Emit start	IP1/5 crossing	IP1/5 φ/2	LHCb L _{peak} (1e33
			(1e11 ppb)		., , ,		IIIax	ramp-up	physics [1]	bunches [2]	bunches	of SB (µm)	plane	(µrad)	Hz/cm ²) [3]
4	2029+1	0.5	1.8	30	30	off	101	20	6	2748	2574	2.5	H/V	250	2
	2030+1	0.5	2.2	25	25	on	132	15	136	2748	2574	2.5	H/V	250	2
	2031+1	0.5	2.2	20	20	on	132	10	154	2748	2574	2.5	H/V	250	2
	2032+1	0.5	2.2	20	20	on	132	10	152	2748	2574	2.5	H/V	250	2
	2035+1	0.5	2.2	15	15	on	132	15	152	2748	2574	2.5	H/V	250	2
E	2036+1	0.5	2.2	15	15	on	132	10	195	2748	2574	2.5	H/V	250	2
5	2037+1	0.5	2.2	15	15	on	132	10	198	2748	2574	2.5	H/V	250	2
	2038+1	0.5	2.2	15	15	on	132	10	198	2748	2574	2.5	H/V	250	2
6	2040+1	0.5	2.2	15	15	on	132	15	165	2748	2574	2.5	H/V	250	2
	2041+1	0.5	2.2	15	15	on	132	10	203	2748	2574	2.5	H/V	250	2

[1]: No ion operation beyond Run 4

Input from new proposed DMR M. Zerlauth

[2]: <u>25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns</u>

[3]: Not considering LHCb upgrade after LS4, up to <u>3% loss of integrated lumi for ATLAS/CMS.</u>

To mention I will show next some LHCb studies

Run	Year	Efficiency	Bunch intensity (1e11 ppb)	β _x * (cm)	β _y * (cm)	сс	PU _{max}	Days Intensity ramp-up	Days Proton physics [1]	# colliding IP1/5 bunches [2]	# colliding IP8 bunches	Emit start of SB (µm)	IP1/5 crossing plane	IP1/5 φ/2 (µrad)	LHCb L _{peak} (1e33 Hz/cm²) [3]
	2029+1	0.5	1.8	30	30	off	101	20	6	2748	2574	2.5	H/V→V/H	250	2
Λ	2030+1	0.5	2.2	25	25	on	132	15	136	2748	2574	2.5	H/V→V/H	250	2
4	2031+1	0.5	2.2	20→8	20→18	on	132	10	154	2748	2574	2.5	H/V→V/H	250	2
	2032+1	0.5	2.2	20→8	20→18	on	132	10	152	2748	2574	2.5	H/V→V/H	250	2
	2035+1	0.5	2.2	15→8	15→18	on	132	15	152	2748	2574	2.5	H/V→V/H	250	2
E	2036+1	0.5	2.2	15→8	15→18	on	132	10	195	2748	2574	2.5	H/V→V/H	250	2
J	2037+1	0.5	2.2	15→8	15→18	on	132	10	198	2748	2574	2.5	H/V→V/H	250	2
	2038+1	0.5	2.2	15→8	15→18	on	132	10	198	2748	2574	2.5	H/V→V/H	250	2
6	2040+1	0.5	2.2	15→8	15→18	on	132	15	165	2748	2574	2.5	H/V→V/H	250	2
0	2041+1	0.5	2.2	15→8	15→18	on	132	10	203	2748	2574	2.5	H/V→V/H	250	2

"Flat 8/18 cm"

Run	Year	Efficiency	Bunch intensity (1e11 ppb)	β _x * (cm)	β _y * (cm)	сс	PU _{max}	Days Intensity ramp-up	Days Proton physics [1]	# colliding IP1/5 bunches [2]	# colliding IP8 bunches	Emit start of SB (µm)	IP1/5 crossing plane	IP1/5 φ/2 (µrad)	LHCb L _{peak} (1e33 Hz/cm²) [3]
	2029+1	0.5	1.8	30	30	off	101	20	6	2748 → 2440	2574 → 2240	2.5	H/V	250	2
4	2030+1	0.5	2.2	25	25	on	132	15	136	2748 → 2440	2574 → 2240	2.5	H/V	250	2
4	2031+1	0.5	2.2	20	20	on	132	10	154	2748 → 2440	2574 → 2240	2.5	H/V	250	2
	2032+1	0.5	2.2	20	20	on	132	10	152	2748 → 2440	2574 → 2240	2.5	H/V	250	2
	2035+1	0.5	2.2	15	15	on	132	15	152	2748 → 2440	2574 → 2240	2.5	H/V	250	2
-	2036+1	0.5	2.2	15	15	on	132	10	195	2748 → 2440	2574 → 2240	2.5	H/V	250	2
Э	2037+1	0.5	2.2	15	15	on	132	10	198	2748 → 2440	2574 → 2240	2.5	H/V	250	2
	2038+1	0.5	2.2	15	15	on	132	10	198	2748 → 2440	2574 → 2240	2.5	H/V	250	2
C	2040+1	0.5	2.2	15	15	on	132	15	165	2748 → 2440	2574 → 2240	2.5	H/V	250	2
0	2041+1	0.5	2.2	15	15	on	132	10	203	2748 → 2440	2574 → 2240	2.5	H/V	250	2

"Round hybrid": <u>25ns_2452b_2440_1952_2240_248bpi_12inj_mixed</u>

Run	Year	Efficiency	Bunch intensity (1e11 ppb)	β _x * (cm)	β _y * (cm)	сс	PU _{max}	Days Intensity ramp-up	Days Proton physics [1]	# colliding IP1/5 bunches [2]	# colliding IP8 bunches	Emit start of SB (µm)	IP1/5 crossin g plane	IP1/5 φ/2 (µrad)	LHCb L _{peak} (1e33 Hz/cm²) [3]
	2029+1	0.5	1.8	30	30	off	101	20	6	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
4	2030+1	0.5	2.2	25	25	on	132	15	136	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
4	2031+1	0.5	2.2	20	20	on	132	10	154	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
	2032+1	0.5	2.2	20	20	on	132	10	152	2748 → 2736	2574→2370	2.5 → 2.2	H/V	250	2
	2035+1	0.5	2.2	15	15	on	132	15	152	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
E	2036+1	0.5	2.2	15	15	on	132	10	195	2748 → 2736	2574→2370	2.5 → 2.2	H/V	250	2
Э	2037+1	0.5	2.2	15	15	on	132	10	198	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
	2038+1	0.5	2.2	15	15	on	132	10	198	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2
C	2040+1	0.5	2.2	15	15	on	132	15	165	2748 → 2736	2574→2370	2.5 → 2.2	H/V	250	2
0	2041+1	0.5	2.2	15	15	on	132	10	203	2748→ 2736	2574→2370	2.5 → 2.2	H/V	250	2

"Round BCMS": <u>25ns_2744b_2736_2246_2370_240bpi_13inj_800ns_bs200ns_BCMS_5x48b</u>

To mention that I will show next IHC observations with BCMS

Run	Year	Efficiency	Bunch intensity (1e11 ppb)	β _x * (cm)	β _y * (cm)	сс	PU _{max}	Days Intensity ramp-up	Days Proton physics [1]	# colliding IP1/5 bunches [2]	# colliding IP8 bunches	Emit start of SB (µm)	IP1/5 crossing plane	IP1/5 φ/2 (µrad)	LHCb L _{peak} (1e33 Hz/cm²) [3]
	2029	0.5	1.8	30	30	off	101	20	6	2748	2574	2.5	H/V	250	2
4	2030	0.5	2.2	25	25	on	132	15	136	2748	2574	2.5	H/V	250	2
4	2031	0.5	2.2	20	20	on	132	10	154	2748	2574	2.5	H/V	250	2
	2032	0.5	2.2	20	20	on	132	10	152	2748	2574	2.5	H/V	250	2
	2035	0.5	2.2	15	15	on	132	15	152 → 130	2748	2574	2.5	H/V	250	2
E	2036	0.5	2.2	15	15	on	132	10	195 → 172	2748	2574	2.5	H/V	250	2
5	2037	0.5	2.2	15	15	on	132	10	198 →175	2748	2574	2.5	H/V	250	2
	2038	0.5	2.2	15	15	on	132	10	198 →175	2748	2574	2.5	H/V	250	2
6	2040	0.5	2.2	15	15	on	132	15	165 →141	2748	2574	2.5	H/V	250	2
0	2041	0.5	2.2	15	15	on	132	10	203→179	2748	2574	2.5	H/V	250	2

"Nominal ions" → "Extended ions"

Scenarios

Scenario	Optics	Duration	Filling scheme
Baseline	Round Run4 20cm	Nominal ions	Standard
Round hybrid	Round Run4 20cm	Nominal ions	Hybrid
Round BCMS	Round Run4 20cm	Nominal ions	BCMS
Flat 8/18 cm	Flat 8/18 cm	Nominal ions	Standard
Vbaseline extended ions	Round Run4 20cm	Extended ions	Standard
Round hybrid extended ions	Round Run4 20cm	Extended ions	Hybrid
Round BCMS extended ions	Round Run4 20cm	Extended ions	BCMS
Flat extended ions	Flat	Extended ions	Standard

Leveling time & optimal fill length

• For Run 4, reaching 15 cm instead of 20 cm results in 3.44% increase of integrated lumi per year

Yearly & total integrated luminosity

Run	Year	Baseline	Round hybrid	Round BCMS	Flat 8/18 cm	Vbaseline extended ions	Round hybrid extended ions	Round BCMS extended ions	Flat 8/18 cm extended ions
	2029+1	9.6	9.1	10	9.6	9.6	9.1	10	9.6
Λ	2030+1	208	186.1	210.7	208	208	186.1	210.7	208
4	2031+1	238.8	213.4	241	254.1	238.8	213.4	241	254.1
	2032+1	235.7	210.7	237.9	250.8	235.7	210.7	237.9	250.8
	2035+1	248.5	222.6	250.2	256	213.8	191.6	215.3	220.3
E	2036+1	311.7	278.6	313.7	320.5	275.4	246.2	277.2	283.2
5	2037+1	316.4	282.9	318.4	325.3	280.1	250.5	281.9	288.1
	2038+1	316.4	282.9	318.4	325.3	280.1	250.5	281.9	288.1
C	2040+1	269.1	240.9	270.9	277	213.2	207.1	232.8	238.1
0	2041+1	324.3	289.9	326.4	333.4	286.5	256.1	288.3	294.6
Total (fb ⁻¹)		2478.5	2217	2497.7	2560	2259.2	2021.2	2277.1	2334.9

 Reducing crossing angle from 250 to 220 µrad with round optics and 210 µrad with flat results in gain of +1.5% & +1%

Realtive yearly & total integrated luminosity

Run	Year	Baseline (fb-¹)	Round hybrid	Round BCMS	Flat 8/18 cm	Vbaseline extended ions	Round hybrid extended ions	Round BCMS extended ions	Flat 8/18 cm extended ions
	2029+1	9.6	-5.21%	4.17%	0%	0%	-5.21%	4.17%	0%
4	2030+1	208	-10.53%	1.30%	0%	0%	-10.53%	1.30%	0%
	2031+1	238.8	-10.64%	0.92%	6.41%	0%	-10.64%	0.92%	6.41%
	2032+1	235.7	-10.61%	0.93%	6.41%	0%	-10.61%	0.93%	6.41%
	2035+1	248.5	-10.42%	0.68%	3.02%	-13.96%	-22.90%	-13.36%	-11.34%
F	2036+1	311.7	-10.62%	0.64%	2.82%	-11.65%	-21.02%	-11.07%	-9.14%
5	2037+1	316.4	-10.58%	0.63%	2.81%	-11.48%	-20.83%	-10.90%	-8.94%
	2038+1	316.4	-10.58%	0.63%	2.81%	-11.48%	-20.83%	-10.90%	-8.94%
c	2040+1	269.1	-10.48%	0.67%	2.94%	-20.78%	-23.04%	-13.49%	-11.52%
0	2041+1	324.3	-10.60%	0.65%	2.81%	-11.66%	-21.03%	-11.10%	-9.15%
		2478.5	-10.55%	0.77%	3.28%	-8.85%	-18.45%	- 8.13%	-5.79%

- Slight increase with BCMS (+1%) for HL-LHC
- +3% gain with flat optics
- -9% if ion runs beyond Run 4
- -10% with hybrid, -19% if hybrid + ion runs beyond Run 4
- Loss of performance due to ion runs beyond Run 4 can be partially mitigated with flat optics

Interesting observations from Run 3

Performance of BCMS in 2024

Fills	Beam type
9575-9663	Standard
9664-9847	Nominal BCMS
9848-9860	Low-tail BCMS
9861-9876	Nominal BCMS
9877-now	Low-tail BCMS

20% smaller emittance injected in the LHC with BCMS

Performance of BCMS in 2024

Fills	Beam type
9575-9663	Standard
9664-9847	Nominal BCMS
9848-9860	Low-tail BCMS
9861-9876	Nominal BCMS
9877-now	Low-tail BCMS

10% smaller emittance with BCMS at start of SB (& 2% higher bunch intensity)

BCMS performance in 2024: Performance gain

Fill 9667 Fill 9614 200 200 1.28 1.28 190 1.28 1.28 1.0 190 1.0 뜊₀ 1.26 · 튄 1.26 <u><u><u></u><u></u> 180</u></u> Hg 1.26 to 1.26 Ê 0.8 18 IP1 F A A REPAIL AND TABLES Ê 0.8 IP1 H IP1 β, 년 1.24 년 1.24 IP1 1 \$ 170 β, \$ 170 g 1.24 g 1.24 0.6 B2 bı 0.6 . 1.22 آ B2 160 1.22 1.22 160 1.22 0.4 0.4 150 _____ 150 1.20 1.20 1.20 1.20 2.50 2.50 -2.50 2 50 q. 1.4 (qd 1.4 2.25 2.25 ର୍ଘ 1.4 · fg 1.4 2.25 2.25 0 × 1.2 0 × 1.2 j 2.00 g 2.00 0x 1.2 ⁰_× 1.2 − Ê 2.00 -Ê 2.00 · ^ω/<u>1.75</u> A10 2 1.75 ພື້ 1.75 -^u³ 1.75 1.0 1.0 ·f 1.0 1.50 1.50 1.50 1.50 0.8 0.8 0.8 0.8 8 1.25 1.25 1.25 1.25 0.6 0.6 0.6 0.6 1.00 1.00 1.00 800 1.2 Lint(tont) = 0.626 fb-2.0 1.25 1.4 $t_{out} = 8.9 h$ 1.0 600 Litt = 0.557 fb-600 -હ 1.00 (j) a 1.5 0.8 1.0 ation . 1.0 L (10³⁴ Hz/ci € 400 (qd 0.75 400 _0.6 و £дт epai Cdr 10.4 $t_{kvel, ATLAS} = 3.367 h$ E 0.5 2 0.5 200 ATLAS, H $\mathcal{L}_{int}(t_{opt}) = 0.541 \text{ fb}^$ $t_{opt} = 8.133 h_{1}^{\dagger} \tau_{0} = 2.5 h$ 200 ATLAS, F tkvel, CMS = 3.1 h 0.5 $t_{opt} = 8.9 h$, $\tau_0 = 2.5 h$ $t_{text} = 5.133 \text{ h}$ 0.25 CMS V CMS V tore = 8.133 h 0.2 1.22 fb-1/day 1.32 fb-1/day $t_{kvel, ATLAS} = 2.99 h$ level ATLAS = 5.31 h LHCB. H LHCB, H the set cus = 2.86 h $\mathcal{L}_{int} = 0.755 \text{ fb}^-$ 1.15 fb-1/day 1.31 fb⁻¹/day n = 5.07 hLHCB, V LHCB, V 0.00 0.0 7.5 10.0 12.5 7.5 7.5 0.0 5.0 7.5 5.0 7.5 7.5 0.0 2.5 5.0 7.5 10.0 12.5 0.0 2.5 5.0 5.0 10.0 12.5 0.0 5.0 7.5 10.0 12.4 5.0 25 5.0 Time in SB (h) Time in SB (h)

Fill 9614, Standard

Fill 9667, BCMS

Considering a turn-around time of **2.5h**:

• From 1.22 fb⁻¹/day with standard to 1.32 fb⁻¹/day with BCMS: integrated luminosity for fills that make it to the optimal fill length (>8h), **+5%** due to the smaller emittance with BCMS

Losses at the start of collisions

- Bunch-by-bunch effective cross section from Adjust to 20 minutes into Stable Beams, colorcoded with the bunch-by-bunch q-value (average between H/V) measured by the BSRT at the end of injection.
- No clear correlation with beam-beam effects (e.g. number of LR interactions).
- Correlation of losses with bunches with heavier tails.

Losses at the start of collisions

- Started observing lower losses in the latest fills

Losses at the start of collisions

Reduction of losses at the start of collisions with

Reduction of losses at the start of collisions with

Losses during the collapse of the separation bump & start of collisions

 First year where we also observe impact from LHCb: LHCb luminosity 2e33 Hz/cm² while ATLAS/CMS 2e34 Hz/cm²

Losses during the collapse of the separation bump & start of collisions

 First year where we also observe impact from LHCb: LHCb luminosity 2e33 Hz/cm² while ATLAS/CMS 2e34 Hz/cm²

Losses during collisions

Reduction of losses as soon as leveling starts: pointing to small DA at the start?

DA for LHC Run 3

Emittance growth at injection

- Emittance growth mechanism at injection not fully understood:
 - Systematically larger in B1H: ~0.6 $\mu m/h$ for B1H in addition to e-cloud.
 - ~0.35 μ m/h in B2H/V & B1V in addition to e-cloud.

Emittance growth at injection

- Emittance growth mechanism at injection not fully understood:
 - Not consistent with IBS alone, especially for V plane, varies between fills.
 - Linear increase of emittance in time.

Emittance growth during collisions

Fill 10073: STABLE BEAMS declared on August 31, 2024 at 00:22:55

Fill 10073: STABLE BEAMS declared on August 31, 2024 at 00:22:55

LHCb upgrade

Optics scenarios for LHCb

Based on aperture studies, two possible optics scenarios:

- β_x^* and β_y^* :
 - I. <u>Round</u> 1.5 and 1.5 m
 - II. <u>Flat</u> 0.5 and 1.5 m
- **Crossing angle:** Skew net crossing angle as in Run 3 to remove dependence on spectrometer polarity:
 - Internal crossing angle in the horizontal plane: $\phi/2_{int, H}$ = spectrometer polarity x 135 µrad
 - External crossing angle in the vertical plane: $\phi/2_{ext, V} = 170 \mu rad$

skew net crossing angle $|\phi/2_{net}| = 217 \mu rad$ and crossing at 51°

 \rightarrow skew separation needed for luminosity leveling: orthogonal to crossing angle for round optics (51 + 90 = 161°)

• Flat optics can increase leveling time and push integrated luminosity. Issues from operating with flat optics and skew crossing will be discussed in next slides. Flat optics configuration has not been verified yet with Dynamic Aperture studies.

Luminosity scenarios for LHCb

Considering the following luminosity scenarios:

- I. Low: $\mu_{max} = 28$
- II. Medium-A: $\mu_{max} = 34$
- III. Medium-B: μ_{max} = 36
- IV. High: $\mu_{max} = 42$

For each scenario we estimate for both round and flat optics:

- Integrated luminosity per year
- Leveling time
- Impact on ATLAS/CMS performance,
- Luminous region & peak pile-up density

Performance projections: Yearly integrated Iuminosity

Performance projections: Yearly integrated luminosity

Higher yearly integrated luminosity with flat optics: 🚊

From +7 fb⁻¹ or +13% / scenario) to +14 fb⁻¹ -22% (high scenario) n compared to round cs eling time increase: ~+2 hours of leveling (low scenario) to +14 fb⁻¹ or +22% (high scenario) gain compared to round optics

Leveling time increase:

~+2 hours of leveling time and higher ratio of leveling time to optimal fill length

Performance projections: ATLAS/CMS loss of integrated luminosity

Maximum loss of ATLAS/CMS integrated lumi around 2.5% for round and 3% for flat Longitudinal luminous region around 43 mm (round) and 38 mm (flat) or -12% between flat and round

Peak pile-up density increase by ~25% between flat and round

Flat optics configuration must be verified with Dynamic Aperture studies and MDs.

Increased peak-pile up density and shortened luminous region results from the reduction of $\beta^*=1.5$ m (round) to 0.5 m (flat) in H-plane while crossing plane is skew.

Shift of pile-up density maximum can be mitigating by replacing orthogonal separation with separation at 61 ° w.r.t crossing plane (51°).

Conclusions for LHCb upgrade

- Higher yearly integrated luminosity with flat optics:
 - From +7 fb⁻¹ or +13% (low scenario) to +14 fb⁻¹ or +22% (high scenario) gain compared to round optics
- Leveling time increase:
 - ~+2 hours of leveling time and higher ratio of leveling time to optimal fill length
- Maximum loss of ATLAS/CMS integrated lumi around 2.5% for round and 3% for flat
- Longitudinal luminous region around 43 mm (round) and 38 mm (flat) or -12% between flat and round
- Peak pile-up density increase by ~25% between flat and round
- Flat optics configuration must be verified with Dynamic Aperture studies and MDs.
- Increased peak-pile up density and shortened luminous region results from the reduction of β^{*}=1.5 m (round) to 0.5 m (flat) in H-plane while crossing plane is skew.
- Shift of pile-up density maximum can be mitigating by replacing orthogonal separation with separation at 61 ° w.r.t crossing plane (51°).

Backup slides

Intensity ramp up

Based on Riccardo's Chamonix 2024 talk

Intensity ramp up

Based on Riccardo's Chamonix 2024 talk

BCMS performance in 2024

Emittance start of injection (μm)	B1H	B1V	B2H	B2V
Fills 9575-9663	1.57	1.59	1.5	1.5
Fills 9664-9694	1.19	1.27	1.13	1.16
%	-24.2	-20.1	-24.7	-22.7
Emittance end of injection (µm)				
Fills 9575-9663	1.77	1.71	1.63	1.62
Fills 9664-9700	1.49	1.44	1.32	1.31
%	-15.7	-16	-18.7	-18.8
Emittance start of SB (μm)				
Fills 9575-9663	1.84	1.66	2.25	2.3
Fills 9664-9694	1.57	1.53	1.99	2.04
%	-14.67	-7.83	-11.56	-11.3

Bunch intensity (1e11 ppb)	B1 INJPHYS	B2 INJPHYS	B1 STABLE	B2 STABLE		
Fills 9573-9663	1.59	1.59	1.56	1.55		
Fills 9664-9694	1.62	1.62	1.59	1.57		
%	+1.89	+1.89	+1.92	+1.29		

BCMS performance in 2024: Leveling time

• Step in leveling time results from the combination of smaller emittances at start of SB **and** increased bunch intensity.

• Clear tail reduction when injected in the LHC in the last fills.

- Clear tail reduction
 when injected in the LHC
 in the last fills.
- SPS scraping did not change, usual fill-to-fill variation. However, with the same SPS scraping, q injected in the LHC is lower.

Plotting (100-SPS scraping %) which is correlated with q (larger scraping, lower tails)

- Clear tail reduction when injected in the LHC in the last fills.
- SPS scraping did not change, usual fill-to-fill variation. However, with the same SPS scraping, q injected in the LHC is lower.
- Tail step also observed in injectors, no impact on emittance. Source of improvement still unknown but possibly originating from PS.

 Clear tail reduction also at the end of LHC injection for the last fills.

- Clear tail reduction also at the end of LHC injection for the last fills.
- Clear correlation with improvement of losses at the start of collisions.
- Can also explain discrepancy between B1 and B2 observed in some fills: B1H has systematically larger tails already at LHC injection due to mismatch between SPS and LHC. MD showed that this can be partially mitigated with optimized transfer function in transfer line from ABT.

- Clear tail reduction also at the end of LHC injection for the last fills.
- Clear correlation with improvement of losses at the start of collisions.
- Can also explain discrepancy between B1 and B2 observed in some fills: B1H has systematically larger tails already at LHC injection due to mismatch between SPS and LHC. MD showed that this can be partially mitigated with optimized transfer function in transfer line from ABT.

Losses at the start of collisions

 Correlation of losses at the start of Stable Beams with the q-value measured at the end of injection: Larger tails → Higher losses

Losses at the start of collisions

Variations

Run	Year	Efficiency	Bunch intensity (1e11 ppb)	β _x * (cm)	β _y * (cm)	сс	PU _{max}	Days Intensity ramp-up	Days Proton physics [1]	# colliding IP1/5 bunches [2]	# colliding IP8 bunches	Emit start of SB (µm)	IP1/5 crossing plane	IP1/5 φ/2 (µrad)	LHCb L _{peak} (1e33 Hz/cm²) [3]
4	2029	0.5	1.8	30	30	off	101	20	6	2748	2574	2.5	H/V	250	2
	2030	0.5	2.2	25	25	on	132	15	136	2748	2574	2.5	H/V	250	2
	2031	0.5	2.2	20	20	on	132	10	154	2748	2574	2.5	H/V	250	2
	2032	0.5	2.2	20→ 15	20 → 15	on	132	10	152	2748	2574	2.5	H/V	250	2
5	2035	0.5	2.2	15	15	on	132	15	152	2748	2574	2.5	H/V	250	2
	2036	0.5	2.2	15	15	on	132	10	195	2748	2574	2.5	H/V	250	2
	2037	0.5	2.2	15	15	on	132	10	198	2748	2574	2.5	H/V	250	2
	2038	0.5	2.2	15	15	on	132	10	198	2748	2574	2.5	H/V	250	2
6	2040	0.5	2.2	15	15	on	132	15	165	2748	2574	2.5	H/V	250	2
	2041	0.5	2.2	15	15	on	132	10	203	2748	2574	2.5	H/V	250	2

"Round Run4 20 cm"→ "Round Run4 15cm"

Yearly & total integrated luminosity

Run	Year	Baseline	Baseline 220 urad	Flat 8/18 cm	Flat 8/18 cm 210 urad	
	2029	9.6	10.32	9.6	9.6	
4	2030	208	212.1	208	208	
4	2031	238.8	242.8	254.1	257.2	
	2032	235.7	239.7	250.8	253.9	
	2035	248.5	252.3	256	259.2	
-	2036	311.7	316.2	320.5	324.3	
S	2037	316.4	321	325.3	329.2	
	2038	316.4	321	325.3	329.2	
6	2040	269.1	273.1	277	280.5	
	2041	324.3	329	333.4	337.4	
Total (fb ⁻¹)		2478.5	2517.5	2560	2588.5	

+1.55 %

+1%

Medium-B case:

- leveling time increase from 2 to 4.25 hours with flat.
- Integrated luminosity increase from 47 fb⁻¹/year to 58 fb⁻¹/year with flat.

• Luminous region and peak pile-up density from pile-up density $\frac{\sigma_{inel}L(z)}{f_{rev}N_b}$

• Luminous region and peak pile-up density from pile-up density $\frac{\sigma_{inel}L(z)}{f_{rev}N_b}$

 Possible issue for the detector 1: Shortest luminous region and maximum peak pile-up density with flat optics during leveling.

• Luminous region and peak pile-up density from pile-up density $\frac{\sigma_{inel}L(z)}{f_{rev}N_b}$

 Possible issue for the detector 2: Peak pile-up density not centered around z=0 in the presence of skew crossing, flat optics & orthogonal offset. Shift not observed with round optics or with flat when there is no orthogonal separation.

Flat optics & skew crossing

To understand and address these issues we plot the x-y projections as a function of z

Flat optics & skew crossing

• Example of pure horizontal crossing (similar to LHCb configuration in Run 2/ Run 3 2022)

Flat optics & skew crossing

Example of skew crossing: flattening from β_x*1.5 to 0.5 m affects the crossing plane as there is skew crossing

Flat optics, skew crossing & orthogonal separation

Skew crossing and orthogonal offset: shift of peak pile-up density from z=0 with flat

Mitigating peak pile-up density z-shift

Solving analytically the integrals for the pile-up density, maximum pile-up density for z=0:

Mitigating peak pile-up density z-shift

Performance projections: Yearly integrated Iuminosity

Performance projections: Yearly integrated luminosity

Performance projections: Leveling time

Performance projections: Luminous region & peak pile-up density

Performance projections: ATLAS/CMS loss of integrated luminosity

Performance projections: Summary

	Round optics						Flat optics					
	Low	Medium-a	Medium-b	High	Virtual	Low	Medium-a	Medium-b	High	Virtual		
L _{peak} (10 ³⁴ Hz/cm ²)	1	1.22	1.29	1.5	1.77	1	1.22	1.29	1.5	2.72		
Maximum pile-up	28	34	36	42	49.5	28	34	36	42	76.1		
L _{int} per year (fb ⁻¹)	42.16	46.09	47.25	49.34	50.32	48.73	55.85	57.89	63.36	76.24		
Leveling time (h)	3.42	2.33	2	1.083	0	5.42	4.5	4.25	3.42	0		
Optimal fill length (h)	7.67	7.67	7.58	7.58	7.58	7.58	7.5	7.5	7.42	7.25		
Leveling time/Optimal fill length	0.45	0.3	0.26	0.14	0	0.71	0.6	0.57	0.46	0		
Loss of ATLAS/CMS integrated lumi (%)	-1.87	-2.09	-2.14	-2.27	-2.33	-2.16	-2.54	-2.66	-2.95	-3.67		
Luminous region (mm) at t=0	43.3	43.3	43.31	43.31	43.32	38.41	38.43	38.44	38.45	38.51		
Peak pile-up density (mm ⁻ ¹) at t=0	0.29	0.34	0.35	0.4	0.46	0.41	0.47	0.49	0.54	0.79		

Flat optics scenario is **not** yet verified with Dynamic Aperture studies, MD validation will also be needed

Conclusions

- Higher yearly integrated luminosity with flat optics:
 - From +7 fb⁻¹ or +13% (low scenario) to +14 fb⁻¹ or +22% (high scenario) gain compared to round optics
- Leveling time increase:
 - ~+2 hours of leveling time and higher ratio of leveling time to optimal fill length
- Maximum loss of ATLAS/CMS integrated lumi around 2.5% for round and 3% for flat
- Longitudinal luminous region around 43 mm (round) and 38 mm (flat) or -12% between flat and round
- Peak pile-up density increase by ~25% between flat and round
- Flat optics configuration must be verified with Dynamic Aperture studies and MDs.
- Increased peak-pile up density and shortened luminous region results from the reduction of β^{*}=1.5 m (round) to 0.5 m (flat) in H-plane while crossing plane is skew.
- Shift of pile-up density maximum can be mitigating by replacing orthogonal separation with separation at 61 ° w.r.t crossing plane (51°).

