

Results from the MD on Schottky signals

Christophe Lannoy, Kacper Lasocha, Diogo Alves, Nicolas Mounet Acknowledgements: Tatiana Pieloni, Ivan Karpov, Theodoros Argyropoulos

1st October 2024

Outline

- Introduction
 - Longitudinal Schottky spectrum
 - Transverse Schottky spectrum
- Experimental Schottky spectra from the LHC
 - Longitudinal impedance effect
 - Estimate of the LHC longitudinal impedance
 - Transverse impedance effect
- Conclusion

Introduction: The Schottky Monitor

- The Schottky spectrum is based on the measurement of the beam fluctuations in the longitudinal and transverse planes.
- The Schottky spectrum is the **power spectral density** of the beam current in the longitudinal plane and the dipole moment in the transverse planes.
- Important **non-invasive** method for beam diagnostics (emittance, tune, chromaticity, bunch profile, ...).
- The Schottky monitor is one of the only instruments with the potential of measuring the LHC chromaticity in a non-invasive way.
- However, **impedance**, **non-linearities**, **and other collective effects** can strongly affect the Schottky spectrum, preventing the extraction of beam and machine parameters.

➔ The distortion caused by impedance can also be used to estimate the impedance itself.

Details of the LHC Schottky system in M. Betz et al., NIM, vol. 874, pp 113-126, 2017

Longitudinal Schottky Spectrum (synchronous particle)

Longitudinal Schottky Spectrum

2.

 τ_i : Time difference between particle *i* and the synchronous particle

3. Using the Jacobi Anger relation $e^{jz\sin\theta} = \sum_{j=1}^{\infty} J_p(z)e^{jp\theta}$ $p = -\infty$

 \rightarrow The intensity signal can be written in the following form:

$$i_{i}(t) = qf_{0} \sum_{\substack{n \neq i \\ n \neq i}}^{\infty} J_{p}(n\omega_{0}\widehat{\tau_{i}}) e^{j\left[\underbrace{n\omega_{0} + p\Omega_{s_{i}}}_{\text{Frequency}}t + \underbrace{p\varphi_{s_{i}}}_{\text{Phase}}\right]}$$
Summation over barmonic *n* Bessel satellites *p*

Longitudinal Schottky Spectrum

Longitudinal Schottky Spectrum

CÉRN

Transverse Schottky spectrum

CÉRN

Experimental LHC spectra: Longitudinal Impedance Effects

- Longitudinal impedance significantly affects proton Schottky spectra.
- Spectra of bunches of different intensities (0.5e11 to 2e11 ppb) acquired at injection during MD block 1.

- Impedance can be source of instabilities and can cause intensity limitation.
 Important to have a good knowledge of the machine impedance.
- Current LHC longitudinal impedance model is a byproduct of the transverse impedance model.
 N. Mounet, PhD thesis, The LHC Transverse Coupled-Bunch Instability
- Could be inaccurate. Main source of longitudinal impedance not necessarily the same as for transverse impedance.
- Model re-evaluation is in progress (RF team, Michail Zampetakis, Ivan Karpov).

Can we extract information about the machine (longitudinal) impedance from the shift of the Schottky satellites?

- 1. Understand how impedance affects the dynamic of the particles (amplitude dependent tune shift).
- 2. How this new dynamic will be reflected in the Schottky spectrum.

Without impedance

Longitudinal equation of motion.

K: Elliptic integral of the first kind.

With impedance

Longitudinal equation of motion including forces coming from impedance:

$$\ddot{\phi} + \Omega_0^2 \sin \phi = \frac{\eta h \omega_0}{p_0} F_{Imp}(t)$$

$$\Omega_s(\hat{\phi}) = \Omega_0 \sqrt{S_1} \left(1 + \frac{3S_3}{8S_1} \hat{\phi}^2 \right)$$

With some approximations, a **relation between synchrotron frequency and oscillation amplitude** can be derived.

Where the S_n coefficients account for the effect of impedance and are defined from the bunch spectrum $\widehat{\lambda(\omega)}$ and the impedance function $Z(\omega)$.

Details in: C. Lannoy et al 2024, JINST 19 P03017

→ Impedance is responsible of an amplitudedependent synchrotron tune shift.

• The new relation between synchrotron frequency and amplitude can be inserted in the original theoretical expression of the Schottky spectrum:

Synchrotron frequency with impedance

 This last expression allows to extend theoretical frameworks such as the Monte Carlo approach or the matrix formalism (K. Lasocha and D. Alves).

 $i_i(t)$

Benchmark of the theory against macro-particle simulation (PyHEADTAIL).

• Fitting of Schottky spectrum is not trivial as it **depends on many parameters**:

Longitudinal band

- RF voltage
- Long. bunch profile
- Long. impedance
- Intensity

Transverse bands

- All longitudinal parameters
- Betatron tune
- Chromaticity
- Transverse profile
- Transverse impedance
- Lattice non-linearities

...

→ The longitudinal band is easier to fit as it depends on less parameters.

• Fitting of Schottky spectrum is not trivial as it **depends on many parameters**:

Schottky spectra from MD 11723: Nominal Gaussian bunch, fit with $Im(Z_{||})/n = 70 \text{ m}\Omega$

Schottky spectra from MD 11723: Nominal Gaussian bunch, fit with $Im(Z_{||})/n = 135 \text{ m}\Omega$

Schottky spectra from MD 11786: Short q-Gaussian bunch

Short q-Gaussian bunch:

 $\sigma_{rms} = 0.67 \, ns$

•
$$q = 0.25$$

•
$$N = 4.8e10 \text{ ppb}$$

Fitting less obvious → Neither the full LHC impedance model nor a BB resonator can reproduce closely the measurement.

Better agreement might be obtained by fitting both shunt impedance and cutoff frequency (study ongoing).

- Overall, best fitting obtained with: $Im(Z_{||})/n = 135 \text{ m}\Omega$
- Increase of 70% compared with the current longitudinal impedance model: $Im(Z_{||})/n = 80 \text{ m}\Omega$

N. Mounet, PhD thesis, *The LHC Transverse Coupled-Bunch Instability* I. Karpov and L. Giacomel IWG talks, https://indico.cern.ch/event/1422663/

• Still preliminary result, impact of the cut-off frequency of the broadband model to be analysed.

Experimental LHC spectra: Transverse impedance effects

- Transverse impedance significantly affects proton Schottky spectra.
- Spectra of bunches of different intensities (0.1e11 to 2e11 ppb) acquired at injection during MD block 1.

Conclusion

Summary of the talk:

- Longitudinal impedance.
 - Shift of synchrotron satellites observed experimentally.
 - Theory available allowing fitting of impedance.
 - First measurements seem to indicate an increased impedance w.r.t. current model.
 - Further studies needed to analyse the impact of cut-off frequency.
- Transverse impedance.
 - Tune shift observed in experimental spectra.
 - Theory available for quadrupolar impedance and still to be developed for dipolar impedance.

home.cern

Experimental LHC spectra: Transverse impedance effects

- Transverse **impedance >** Shift and spreading of the central transverse satellites.
- Current development and understanding:
 - Quadrupolar impedance > Incoherent tune shift.
 - Theory developed and validated with simulations for a transverse broadband resonator.
 - Expanding theory to arbitrary impedance function.
 - **Dipolar impedance** → Coherent tune shift.
 - Not clear how coherent tune shift is reflected in the Schottky spectrum, study ongoing.

Wake function and impedance

Wake function: integrated force on the test particle.

 $\int \vec{F}_{wake}(x_s, y_s, s_s, x_t, y_t, s_t) ds_s = -q_s q_t \vec{w}(x_s, x_t, y_s, y_t, z)$

$$Z_{\parallel}(\omega) = \frac{1}{\beta c} \int_{-\infty}^{\infty} W_{\parallel}(z) e^{\frac{-j\omega z}{\beta c}} dz$$

[1] Wakefields and Impedances, CAS 2022, K. Li

Transverse Impedance Effects

• For a stable beam where the bunch is centered and symmetric around the orbit, the dipolar wake contributions will cancel out.

→ For similar value of impedances, we except the effects of the dipolar wake to be negligeable compared to the quadrupolar one (on the Schottky spectrum).

• The quadrupolar wake will contribute to an additional linear focusing (or defocusing) force.

Transverse Impedance Effects (simulation)

We include a transverse broad-band resonator in the simulation (with dipolar and quadrupolar wakes).

→ Overall shift of the spectrum

CÉRN

→ Satellites are not simply shifted but their shape are also modified

Transverse Impedance Effects (theory vs simulation)

Benchmarking: theory and simulation

