

The Research Council of Norway

Introduction to The Higgs Boson

Western Norway

University of Applied Sciences

UiB Bachelor Visit

I. Slazyk

19/11/2024

Standard Model

Standard Model **Matter Particles**

Elementary particles:

quarks •

Standard Model Matter Particles

Elementary particles:

- quarks
- leptons

Standard Model Force Carriers

Elementary particles:

- quarks
- leptons
- bosons

- electromagnetic force
- strong force
- weak force

Standard Model **Force Carriers**

Elementary particles:

- quarks
- leptons
- bosons

Fundamental forces:

- electromagnetic force
- strong force
- weak force

Higgs boson:

- Higgs field ٠
- Higgs potential .
- Spontaneous symmetry breaking .
- Higgs mechanism
- Discovery
- Unanswered questions

Standard Model Century of Development

29/03/2022 ISAPP 2022 INSTITUT PASCAL

Standard Model Century of Development

29/03/2022 ISAPP 2022 INSTITUT PASCAL

Elementary Particles Properties

Elementary Particles Mass

Each generation heavier than the previous one

Einstein's mass-energy equivalence:

$$E=mc^2\to m=\frac{E}{c^2}$$

Elementary Particles Mass

Each generation heavier than the previous one

Einstein's mass-energy equivalence:

 $E = mc^2 \rightarrow m = \frac{E}{c^2}$

Energy of 1 gram of mass:

٠

٠

٠

٠

spin \rightarrow intristic angular momentum

Fundamental Forces included in the SM

Fundamental Forces Strong Force

three generations of matter interactions / force carriers **Fundamental Forces included in the SM** (fermions) (bosons) Ш ≈2.2 MeV/c² ≈1.28 GeV/c² ≈173.1 GeV/c² 0 mass **Strong Force Electromagnetic Force** Weak Force charge 2/3 2/3 0 2/3 С g U L 1/2 1/2 1/2 1 spin higgs charm gluon top up UARKS ≈4.7 MeV/c2 ≈96 MeV/c² ≈4.18 GeV/c² -1/3 -1/3 -1/3 S b C 1/2 1/2 1/2 down strange bottom photon 0 **ONS** e SO BOSONS electron Z boson tau muon m ш 5 VECTOR GA electron muon tau W boson neutrino neutrino neutrino

Strong Force

Strong Force

Strong Force

Fundamental Forces Electromagnetic Force

Fundamental Forces Electromagnetic Force

Fundamental Forces Electromagnetic Force

Fundamental Forces Weak Force

Fundamental Forces Weak Force

Fundamental Forces Weak Force

Standard Model The Missing Puzzle

Standard Model The Missing Puzzle

Conflict (early version of SM):

- particles assumed to be massless
- yet, experiments showed they have masses

Idea:

• mechanism to give these particles mass while preserving the mathematical structure and symmetry of SM

Standard Model The Missing Puzzle

- particles assumed to be massless
- yet, experiments showed they have masses

Idea:

mechanism to give these particles mass while preserving the mathematical structure and symmetry of SM

Explanation:

mechanism that explains how particles aquire mass

Higgs Field & Higgs Potential

Higgs field

- a scalar field that permeates the entire universe
- has a non-zero value everywhere in space, even in vacuum
- elementary particles that interact with the Higgs field acquire mass
- the more they interact, the more mass they gain
- elementary particles that do not interact with the Higgs field remain massless

Higgs Field & Higgs Potential

Higgs field

- a scalar field that permeates the entire universe
- has a non-zero value everywhere in space, even in vacuum
- elementary particles that interact with the Higgs field acquire mass
- the more they interact, the more mass they gain
- elementary particles that do not interact with the Higgs field remain massless

Higgs potential

- the function that describes the energy of the Higgs field
- unique potential shape, often referred as a "mexican hat" or "wine bottle" potential
- this shape allows the field to have a non-zero value even in its lowest-energy state
- non-zero value = Vacuum Expectation Value (VEV)

Spontaneous Symmetry Breaking

Energy state at $\phi = 0$:

- rotational symmetric
- false vacuum (high-energy state)
- no interactions
- unstable

- \rightarrow fully symmetric in all directions
- \rightarrow no excitation in the field ϕ
- \rightarrow no mass generated
- \rightarrow potential not at its lowest

Spontaneous Symmetry Breaking

Energy state at $\phi = 0$:

- rotational symmetric
- false vacuum (high-energy state)
- no interactions
- unstable

Energy state at $\phi \neq 0$:

- rotational symmetry broken
- true vacuum (lowest-energy state)
- interactions possible
- non-zero energy vacuum state
- higgs boson

- \rightarrow fully symmetric in all directions
- \rightarrow no excitation in the field ϕ
- \rightarrow no mass generated
- \rightarrow potential not at its lowest

 \rightarrow breaks the rotational symmetry of the field

\rightarrow spontaneous symmetry breaking

- \rightarrow the field ϕ settles in a new minimum, VEV
- \rightarrow mass generated for particles interacting with the field
- \rightarrow energy due to the Higgs field's VEV
- \rightarrow excitations as Higgs boson

Higgs Mechanism

Higgs mechanism

- process by which particles acquire mass through interaction with the Higgs field's VEV
- the Higgs field settles after the symmetry breaking and has a non-zero value everywhere
- other quantum fields are able to interact with the Higgs field
- while interacting, they experience a sort of resistance which is interpreted as mass gain

No interaction:

• photons (and gluons) \rightarrow no mass

Direct interaction:

• *W* and *Z* bosons

Indirect interaction:

- fermions
- interaction through Yukawa coupling
- Yukawa coupling determines the strength of the interaction between a particular fermion and the Higgs field

Mass is proportional to Yukawa coupling:

- photon: $m_{\gamma} = 0$ (no coupling)
- electron: $m_e = 0.511 \text{ MeV}$ (small Yukawa coupling)
- top quark: $m_t = 173.1 \text{ GeV}$ (very strong Yukawa coupling)

the mass differentiation between the W and Z bosons and photons leads to the separation of the weak and electromagnetic forces after symmetry breaking

SM Lagrangian

 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g^a_{\mu} \partial_{\nu} g^a_{\mu} - g_s f^{abc} \partial_{\mu} g^a_{\nu} g^b_{\mu} g^c_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \partial_{\nu} W^+_{\mu} \partial_{\nu} W^-_{\mu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{ade} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} - \frac{1}{4} g^2_s f^{abc} f^{abc} g^b_{\mu} g^c_{\nu} g^d_{\mu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g^e_{\nu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g^e_{\nu} g^e_{\mu} g^e_{\nu} g$ $M^2 W^+_\mu W^-_\mu - rac{1}{2} \partial_
u Z^0_\mu \partial_
u Z^0_\mu - rac{1}{2c^2} M^2 Z^0_\mu Z^0_\mu - rac{1}{2} \partial_\mu A_
u \partial_\mu A_
u - igc_w (\partial_
u Z^0_\mu (W^+_\mu W^-_
u - igc_w))$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\nu}\partial_{\nu}W^+_{\mu}))$ $igs_w(\partial_{\nu}A_{\mu}(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-) - A_{\nu}(W_{\mu}^+\partial_{\nu}W_{\mu}^- - W_{\mu}^-\partial_{\nu}W_{\mu}^+) + A_{\mu}(W_{\nu}^+\partial_{\nu}W_{\mu}^- - W_{\mu}^-)$ $W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})) - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - Q^{2}_{\mu}W^{+}_{\mu}W^{-}_{\nu}))$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\mu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{a^2} \alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{2}g^2 \alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2\right)$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H \frac{1}{2}ig\left(W^+_{\mu}(\phi^0\partial_{\mu}\phi^--\phi^-\partial_{\mu}\phi^0)-W^-_{\mu}(\phi^0\partial_{\mu}\phi^+-\phi^+\partial_{\mu}\phi^0)\right)+$ $\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}\left(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}\left(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}\left(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}\left(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c}\left(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)\right)$ $M\left(\frac{1}{c_{w}}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}W_{\mu}(W_{\mu}^{+}\phi^{ W^-_\mu \phi^+) - ig rac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^-) + ig s_w (\phi$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}(H^2+(\phi^0)^2+2\phi^+\phi^-)-\frac{1}{8}g^2\frac{1}{c^2}Z^0_{\mu}Z^0_{\mu}(H^2+(\phi^0)^2+2(2s^2_w-1)^2\phi^+\phi^-) \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^- + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g$ $(W^-_{\mu}\phi^+) + \frac{1}{2}ig^2s_wA_{\mu}H(\tilde{W^+_{\mu}\phi^-} - W^-_{\mu}\phi^+) - g^2\frac{s_w}{c}(2c_w^2 - 1)\tilde{Z}^0_{\mu}A_{\mu}\phi^+\phi^- - g^2\frac{s_w}{c}(2c_w^2 - 1)\tilde{Z}^0_{\mu}A_{\mu}\phi^- - g^2\frac$ $g^2 s_w^2 A_\mu A_\mu \phi^+ \phi^- + rac{1}{2} i g_s \lambda^a_{ij} (ar q_i^\sigma \gamma^\mu q_i^\sigma) g^a_\mu - ar e^\lambda (\gamma \partial + m_{
ho}^\lambda) e^{w_\lambda} - ar
u^\lambda (\gamma \partial + m_{
ho}^\lambda)
u^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda - ar u^\lambda_i (\gamma \partial + m_{
ho}^\lambda) \mu^\lambda + ar u^\lambda_i (\gamma \partial + m_{$ $m_{u}^{\lambda}u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{2}(\bar{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{2}(\bar{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})\right) +$ $\frac{ig}{4c_w}Z^0_{\mu}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s^2_w-1-\gamma^5)e^{\lambda})+(\bar{d}^{\lambda}_i\gamma^{\mu}(\frac{4}{3}s^2_w-1-\gamma^5)d^{\lambda}_i)+$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W^{-}_{\mu}\left((\bar{e}^{\kappa}U^{lep\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}^{\kappa}_{i}C^{\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})u^{\lambda}_{i})\right)+$ $\frac{ig}{2M_{\lambda}/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}{}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_e^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{\lambda}}{M}\phi^0(\bar{\nu}^{\lambda}\gamma^5\nu^{\lambda}) - \frac{ig}{2}\frac{m_e^{\lambda}}{M}\phi^0(\bar{e}^{\lambda}\gamma^5e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M^R_{\lambda\kappa}(1-\gamma_5)\hat{\nu}_{\kappa} \frac{1}{4}\overline{\nu_{\lambda}}\frac{M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}}{m_{\lambda\kappa}^{2}} + \frac{ig}{2M_{\lambda}/2}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})\right) + \frac{ig}{2M_{\lambda}}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + \frac{ig}{2M_{\lambda}}(\bar{u}_{j}^{\lambda}C$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac$ $rac{g}{2}rac{m_d^2}{M}H(ar{d}_i^\lambda d_i^\lambda) + rac{ig}{2}rac{m_u^\lambda}{M}\phi^0(ar{u}_i^\lambda\gamma^5 u_i^\lambda) - rac{ig}{2}rac{m_d^\lambda}{M}\phi^0(ar{d}_i^\lambda\gamma^5 d_i^\lambda) + ar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\muar{G}^a G^b g^c_\mu + ar{G}^a G^b g$ $\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c^{2}})X^{0}+\bar{Y}\partial^{2}Y+igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-}-M^{2})X^{-}+igc_{w}W^{+}_{\mu}(\partial_{\mu}$ $\partial_{\mu}\bar{X}^{+}X^{0}$)+ $igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}-\partial_{\mu}\bar{X}^{+}\ddot{Y})+igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} \partial_\mu ar{X}^0 X^+) + igs_w W^-_\mu (\partial_\mu ar{X}^- Y - \partial_\mu ar{Y} X^+) + igc_w Z^0_\mu (\partial_\mu ar{X}^+ X^+ - \partial_\mu ar{Y} X^+))$ $\partial_\mu ar{X}^- X^-) + igs_w A_\mu (\partial_\mu ar{X}^+ X^+ \partial_{\mu}ar{X}^{-}X^{-}) - rac{1}{2}gM\left(ar{X}^{+}X^{+}H + ar{X}^{-}X^{-}H + rac{1}{c_{w}^{2}}ar{X}^{0}X^{0}H
ight) + rac{1-2c_{w}^{2}}{2c_{w}}igM\left(ar{X}^{+}X^{0}\phi^{+} - ar{X}^{-}X^{0}\phi^{-}
ight) +$ $\frac{1}{2a}igM(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+igMs_{w}(\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-})+$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

Standard Model Cup

Dynamics of gauge fields associated with the force carriers:

- $\gamma \rightarrow$ electromagnetic force
- W and $Z \rightarrow$ weak force
- $g \rightarrow$ strong force

Yukawa coupling term describing how fermions gain mass through their interaction with the Higgs field ϕ .

 y_{ij} → Yukawa coupling constant determining the strength of interaction with the Higgs field

Kinetic term for fermions and their interactions with the gauge fields.

• $\psi \rightarrow$ fermion field

 $D \rightarrow \text{covariant derivative}$ showing interactions with gauge fields

Higgs field's kinetic and potential terms.

- $|D_{\mu}\phi|^2 \rightarrow$ kinetic term for the Higgs field
- V(φ) → Higgs potential driving the Higgs mechanism for giving mass to particles

Higgs \rightarrow Di-Tau

Branching Ratios

50 years journey:

- predicted in 1964 by Peter Higgs
- contribution from other physicists: François Englert, Robert Brout, Gerald Guralnik, C.R. Hagen, and Tom Kibble
- Mass anywhere between 10 1000 GeV
- Decays instantaneously, very tiny window to observe it
- The search was considered almost impossible:

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

- Technology cought up in 80s with particle colliders
- Still evaded detection for a few decades
- Each null result narrowed the possible mass range
- Early days of the LHC \rightarrow mass window narrowed down to 115 130 GeV

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

Discovery

- LHC launch: ٠
- First collisions: .
- Discovery: .
- September, 2008 March 30, 2010
- July 4, 2012

What Now?

So far so good:

- Since the discovery, more data was accumulated
- Everything points the Higgs boson being consistent with the SM

Still, many unanswered questions:

- What explains the Higgs mass at 125.35 GeV?
- Are there more Higgs bosons?
- Is it connected to Dark Matter?
- Where is all the antimatter in the universe?

ENERGY DISTRIBUTION OF THE UNIVERSE

NORMAL MATTER

Thank you for your attention!