

The BBWC experimental program in LHC and potential for HL era

- 1. Introduction
- 2. The BBWC experimental program in LHC
- 3. The BBWC performance in HL-LHC era
- G. Sterbini on behalf of and indebted to many colleagues¹

Beam-beam wire compensation in the last 25 years

- Interest in testing experimentally the BBWC principle arose soon after the seminal papers.
- The wire excitation and compensation was tested in SPS, RHIC and made operational in DAFNE.
 (I will add few plots on SPS, RHIC and DAFNE wires)

HL-LHC wire demonstrators

 \rightarrow **4 proof-of-principle demonstrators** installed in LHC since 2017 for Run 2 MDs²,

HL-LHC wire demonstrators

- \rightarrow **4 proof-of-principle demonstrators** installed in LHC since 2017 for Run 2 MDs²,
- \rightarrow embedded in operational tertiary collimators
 - L1B1 and R1B2 in IR1 (V-plane, $s_{IP} \approx 146$ m)
 - L5B1 and R5B2 in IR5 (H-plane, $s_{IP} \approx 148$ m)

 \rightarrow each jaw has a **1** m long, \emptyset =**2.48 mm** Cu wire carrying **350** A.

Courtesy of A. Poyet and A. Rossi.

²A. Povet et al., PRST AB **27** 071003 (2024)

BBWC LHC Experiments

 \rightarrow use the demonstrators in Run 3 production fills.

 \rightarrow use the demonstrators in Run 3 production fills.

DA simulations of the wire impact in Run 3. Courtesy of S. Kostoglou.

 \rightarrow use the demonstrators in Run 3 production fills.

DA simulations of the wire impact in Run 3. Courtesy of S. Kostoglou.

GOAL: despite the sub-optimal configuration, opportunity to integrate in the LHC cycle a moveable magnet (wire) within the machine protection and collimation boundaries \rightarrow This is THE critical aspect of the scheme

The proposal was conceived to

- \rightarrow minimize the validation overhead during the commissioning,
- \rightarrow be transparent for the LHC cycle in case of wire unavailability,
- \rightarrow secure the fill integrated luminosity before the compensation.

The proposal was conceived to

 \rightarrow minimize the validation overhead during the commissioning,

- \rightarrow be transparent for the LHC cycle in case of wire unavailability,
- \rightarrow secure the fill integrated luminosity before the compensation.

In 2022, with the **invaluable support of the LHC OP team**, a beam process at **end of the** \mathcal{L} -levelling ($\beta^*=30 \text{ cm}, \theta_c/2 = 160 \mu \text{rad}, \text{TCT} \text{ at } 8.5 \sigma_{coll}$) with WIRES ON was added.

The proposal was conceived to

 \rightarrow minimize the validation overhead during the commissioning,

- \rightarrow be transparent for the LHC cycle in case of wire unavailability,
- \rightarrow secure the fill integrated luminosity before the compensation.

In 2022, with the **invaluable support of the LHC OP team**, a beam process at **end of the** \mathcal{L} -levelling ($\beta^*=30 \text{ cm}$, $\theta_c/2 = 160 \mu \text{rad}$, TCT at 8.5 σ_{coll}) with WIRES ON was added.

	beam-wire distance [mm]
L1B1	9.2
R1B2	9.2
L5B1	12.4
R5B2	12.4

Effect of the wire and $\sigma_{\it eff}$

As metric to quantify the wire compensation we use the **effective cross-section**, σ_{eff} , that is beam proton losses, $\frac{dN}{dt}$, normalized to the total luminosity, \mathcal{L} ,

 $\sigma_{eff} = -\frac{1}{\sum_{IPs} \mathcal{L}} \frac{dN}{dt}$

IF σ_{eff} is BB-driven THEN, for ideal compensation, $\sigma_{eff} \approx 80$ mb.

A recent operational fill

Wires ON after the end of \mathcal{L} -levelling. Courtesy of S. Kostoglou.

A recent operational fill

Fill 10069, 29 August 2024

BBLR regime appears at the end of \mathcal{L} -levelling. Courtesy of S. Kostoglou.

A recent operational fill

Fill 10069, 29 August 2024

BBLR regime appears at the end of \mathcal{L} -levelling. Courtesy of S. Kostoglou.

Before considering compensating them, we need to excite BBLRs! \rightarrow Explore more aggressive BBLR regimes:

BB Compensation MD, November 5th-6th, 2022. Courtesy of P. Bélanger.

Before considering compensating them, we need to excite BBLRs! \rightarrow Explore more aggressive BBLR regimes:

• fast β^* reduction to 30 cm to maintain high bunch current intensity,

BB Compensation MD, November 5th-6th, 2022. Courtesy of P. Bélanger.

Before considering compensating them, we need to excite BBLRs!

- \rightarrow Explore more aggressive BBLR regimes:
 - fast β^* reduction to 30 cm to maintain high bunch current intensity,
 - ▶ reduced $\theta_c/2$ in IP1/5 (160→130 μ rad),

BB Compensation MD, November 5th-6th, 2022. Courtesy of P. Bélanger.

Before considering compensating them, we need to excite BBLRs!

- \rightarrow Explore more aggressive BBLR regimes:
 - fast β^* reduction to 30 cm to maintain high bunch current intensity,
 - ▶ reduced $\theta_c/2$ in IP1/5 (160→130 μ rad),
 - \mathcal{L} + tunes optimization before switching wires ON,

BB Compensation MD, November 5th-6th, 2022. Courtesy of P. Bélanger.

Before considering compensating them, we need to excite BBLRs!

- \rightarrow Explore more aggressive BBLR regimes:
 - fast β^* reduction to 30 cm to maintain high bunch current intensity,
 - reduced $\theta_c/2$ in IP1/5 (160 \rightarrow 130 μ rad),
 - \mathcal{L} + tunes optimization before switching wires ON,
 - Switching ON/OFF the compensation, only B2 wires available.

BB Compensation MD, November 5th-6th, 2022. Courtesy of P. Bélanger.

- Clear compensation effect on the average σ_{eff} of Beam 2.
- With compensation ON reaching almost 80 mb in a systematic and reproducible way.
- For reduced crossing angle (BB dominated regime), wire compensation effect even more evident.

- Using dBLM signals, clear BB signature visible.
- The compensation reduce significantly the bunch-by-bunch $\sigma_{\it eff}$ spread.
- The PACMAN bunches (with lower parasitic encounter) are not degraded.

Introduction

Experiments in LHC during Run 3 (2017-2024)

From Run 3 to HL-LHC Expected performance gain

HL-LHC Baseline \mathcal{L} -production

Full-crossing angle of 500 μ rad in IP1/5. Courtesy of S. Kostoglou.

► HL baseline: set a large crossing angle to remove/alleviate the problem at the source (→ aperture and CC kick limit)

- ► HL baseline: set a large crossing angle to remove/alleviate the problem at the source (→ aperture and CC kick limit)
- post-LS3 option: BBCW to compensate/alleviate the (residual) BBLR effects.

- ► HL baseline: set a large crossing angle to remove/alleviate the problem at the source (→ aperture and CC kick limit)
- post-LS3 option: BBCW to compensate/alleviate the (residual) BBLR effects.

The BBCW program supported by **HL-LHC Project** but not in the baseline.

- Simulations and Measurements of Long Range Beam-Beam Effects in the LHC, Lyon (FR), 2015,
- Second Workshop on Wire Experiment for Long Range Beam-Beam Compensation, Divonne (FR), 2017,
- WP2/WP13 HL-LHC Satellite Meeting Wire Compensation, Fermilab (US), 2019,
- WP2/WP13 HL-LHC Satellite Meeting Wire Compensation, Uppsala (SE), 2022,
- ▶ 13th HL-LHC Collaboration Meeting, Vancouver (CA), 2023.

From Run 3 to HL

For HL, we are considering, thanks to the crab cavities (CC), full crossing angle of 500 μrad (low BBLR effect at Start of *L*-levelling, SoL, but we are still limited at the end of End of *L*-levelling, EoL.

From Run 3 to HL

- For HL, we are considering, thanks to the crab cavities (CC), full crossing angle of 500 µrad (low BBLR effect at Start of *L*-levelling, SoL, but we are still limited at the end of End of *L*-levelling, EoL.
- BBWC could be used to gain flexibility, e.g.:
 - w/o CC (CC commissioning, only at the start of Run 4), to improve (marginally) performance
 - ▶ w/ CC (during Run 4), toward the EoL, by extending the luminosity levelling time (crossing-angle anti-levelling + aperture gain)
 - if we cannot reach nominal N_b , to gain aperture by reducing the crossing-angle (to lower β^* and recover geometrical \mathcal{L} loss)
 - if we can go beyond nominal N_b , to cope with BBLR effect.

From Run 3 to HL

Performance gain³ by extending the levelling reach/time: \rightarrow w/ CC, BBCWs push $\int \mathcal{L}dt$ by **1.8-3.4%** \rightarrow w/o CC, BBCWs push $\int \mathcal{L}dt$ by **6.2-12.6%**

³K. Skoufaris et al., PRAB **24** 074001, 2021

BBCW and collimation settings (I)

- Even if not housed in a collimator (as for the LHC demonstrator), we are assuming that, as all the other machine elements, the BBCW has to be in the shadow of the tertiary collimators
- the ideal⁴ BBWC setting requests a beam-BBCW distance in σ_n "close" to the one between the two beams
- Simulation and experimental results show that we can still trade-off, i.e. increase, the beam-BBCW distance at the cost of a higher $\int I_W dI$.
- ➤ → crucial to define collimator configuration for a sounded BBCW strategy!

⁴S. Fartoukh et al., PRST AB **18** 121001 (2015)

BBCW and collimation settings (II)

TCT setting	wire L1	wire R1	wire L5	wire R5
tight $\rightarrow 12.0 \sigma$ at $\beta^* = 20 \text{ cm}$	8.9 mm	7.0 mm	6.3 mm	9.4 mm
relaxed \rightarrow 13.2 σ at $\beta^* =$ 20 cm	9.7 mm	7.6 mm	6.9 mm	10.3 mm

Courtesy of B. Lindström.

- 2 collimation settings considered: tight and relaxed (to reduce impedance),
- retraction wire-TCT to be defined (some flexibility with the cells 4/6 TCTs optimization but the background to the experiment need to be taken into account).

Run 4 performance's gain

Distance vs I_w scan with $\beta^* = 0.30$ m, $N_b = 1.8 \ 10^{11}$ ppb, $\theta_c/2 = 190 \ \mu rad$, Q=(0.314, 0.321): up to 2 σ of DA gain

Run 4 performance's gain

Distance vs I_w scan with $\beta^* = 0.30$ m, $N_b = 1.8 \ 10^{11}$ ppb, $\theta_c/2 = 190 \ \mu rad$, Q=(0.314, 0.321): up to 2 σ of DA gain

Interplay with arc octupoles

With a wire at 16 σ , can the arc octupole help? Marginally.

Interplay with arc octupoles

With a wire at 16 σ , can the arc octupole help? Marginally.

Summary

Thank you for your attention.

home.cern