Beam-Beam Wire Compensator (BBWC) Impedance studies

Beam-Beam Wire Compensation Review Meeting CERN 14-15 October 2024

Leonardo Sito

A. Bertarelli, F. Carra, L. Gentini, L. Giacomel, B. Salvant, G. Sterbini, C. Zannini

1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	 Slides 4-8
2.	Unshielded BBWC Impedance	 Slides 10-12
3.	Mitigation options	 Slides 14-23
	3.1. RF load termination	
	3.2. Elliptical shield	
	3.3. Box shield	
4.	Interconnections considerations	 Slide 25
5.	Conclusions	 Slide 27

1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	Slides 4-8
2.	Unshielded BBWC Impedance	 Slides 10-12
3.	Mitigation options 3.1. RF load termination 3.2. Elliptical shield 3.3. Box shield	Slides 14-23
4.	Interconnections considerations	 Slide 25
5.	Conclusions	 Slide 27

The Beam-Beam Wire Compensator:

The impedance study focuses on a **single module**:

4 BBWC **assemblies** (1 per side of IP1 and IP5)

2 beam lines per assembly

3 BBWC modules per beam line

Tot: 12 BBWC modules per beam

The Beam-Beam Wire Compensator:

4 BBWC **assemblies** (1 per side of IP1 and IP5)

- 2 beam lines per assembly
- 3 BBWC modules per beam line

Tot: 12 BBWC modules per beam

The impedance study focuses on a **single module**:

Aluminum Nitride support:

- Support mechanically the wire.
- Enables better heat dissipation.

The Beam-Beam Wire Compensator:

BBWC electromagnetic model keeps all significant features of

the mechanical one:

Integration with other modules:

- 1. No stainless-steel flanges.
- 2. No **interconnecting pipes** with other modules.

Single module:

- 1. No stainless-steel **bolts**.
- 2. Commercial Feedthrough replaced by a **coaxial structure**.

The **BBWC module** can **move** in respect beam. (Span of movement: ±12.5 mm)

- **32.5 mm** \rightarrow Fully out position
- **7.5 mm** → Operation (end of levelling)
- **5 mm** \rightarrow Very conservative situation

Some considerations on

Beam-coupling impedance study

Particle bunch travels in an accelerator device → Electromagnetic wake fields

- The wake fields **dissipate power** (Beam-Induced Heating).
- The wake fields can **trigger instabilities**.

To quantify the wake fields' effects \rightarrow Beam-coupling impedance: frequency dependent complex vector (Z) quantity.

Beam-coupling impedance study

Two figures of merit:

Also a **comment** on **transverse impedance** contribution will be given.

 N_{beam} : number of particles in the beam f_0 : beam revolution frequency $\Lambda(p\omega_0)$: normalized beam spectrum

1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	Slides 4-8
2.	Unshielded BBWC Impedance	 Slides 10-12
3.	Mitigation options3.1. RF load termination3.2. Elliptical shield3.3. Box shield	Slides 14-23
4.	Interconnections considerations	Slide 25
5.	Conclusions	 Slide 27

Results presented at Uppsala, 12th HL Collaboration Meeting

Unshielded BBWC module

Results presented at Uppsala, 12th HL Collaboration Meeting

Unshielded BBWC module

Power deposition on a single module

LHC budget
$$\frac{Im(Z_z)}{n} \sim 90 \text{ m}\Omega$$

DC dissipated power: **2.1 kW**

At **7.5 mm** from the beam:

- Around 20% of the total budget of
 Longitudinal Effective Impedance
- Around 25% of the power dissipated in DC

Impedance contributions are <u>significant</u>, but no showstopper is identified provided impedance minimization iterations in the design.

Results presented at Uppsala, 12th HL Collaboration Meeting

Unshielded BBWC module

We compute the octupole threshold with BBLRC to check the impact of the HOMs on beam stability

B1, positive oct. polarity, $\tau_b = 1.2$ ns, Nb=2.3e+11 , M=3564 , damp=0.01

Device in parking, end of levelling.

The increase of the stability threshold is well below 10A for Q'>10.

1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	Slides 4-8
2.	Unshielded BBWC Impedance	 Slides 10-12
3.	Mitigation options3.1. RF load termination3.2. Elliptical shield3.3. Box shield	Slides 14-23
4.	Interconnections considerations	 Slide 25
5.	Conclusions	 Slide 27

Impedance optimization options

Impedance optimization options

Option A: RF load

•

Driving away RF power from the wire to an external circuit, outside of the vacuum chamber.

• Minimized reflections at the termination of the wire

Strong attenuation of all resonances

Option A: RF load

- <u>No</u> significant impact in terms of effective impedance
- Worse in terms of power loss

Not a feasible solution in terms of minimization of impedance contributions.

RF load at the termination of the wire should be considered for **protection of the power converters** driving the DC current in the wires.

Impedance optimization options

Option B: Elliptical Shield

Elliptical pipe shielding the wire from the beam

- Impedance contribution of the modules is not limiting.
- The impedance contribution of <u>tapers</u> has to be carefully evaluated and minimized.
- This design might pose limitations to the forward physics in CMS (PPS2).

Total budget of Longitudinal Effective Impedance:

- In Operation \sim 2.7 %
 - Fully out $\sim 0.3~\%$

Dissipated power below 10 W (below 0.5 %)

Impedance optimization options

Option C: Box Shield

Box shield fully covering the wire and the aluminum nitride support

In terms of:

- Total budget of Longitudinal
 Effective Impedance
 - Dissipated power

Equal to the elliptical shield option

Option C: Box Shield

Box shield fully covering the wire and the aluminum nitride support

Resonances above 2 GHz not present in the elliptical shield option

In terms of:

- Total budget of Longitudinal
 Effective Impedance
 - Dissipated power

Equal to the elliptical shield option

1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	Slides 4-8
2.	Unshielded BBWC Impedance	 Slides 10-12
3.	Mitigation options 3.1. RF load termination 3.2. Elliptical shield 3.3. Box shield	Slides 14-23
4.	Interconnections considerations	 Slide 25
5.	Conclusions	 Slide 27

The interconnections

Shielding the wire \rightarrow The major impedance contribution could come from the transitions and interconnections:

Bellows ۲

TCDQ collimator has:

- 1. Cardan bellows:
 - Allowing a transverse displacement of ±20 mm 1.
 - 2. With impedance shielding
- 2. Transition from elliptical to round chambers

This option must be discussed with vacuum team

• Tapers:

Careful impedance design is needed to minimize impedance contribution.

VMTAC

5.	Conclusions	 Slide 27
4.	Interconnections considerations	 Slide 25
	3.1. RF load termination3.2. Elliptical shield3.3. Box shield	
3.	Mitigation options	 Slides 14-23
2.	Unshielded BBWC Impedance	 Slides 10-12
1.	Introduction 1.1. The Beam-Beam Wire Compensator 1.2. Impedance Studies	Slides 4-8

Conclusions

Unshielded BBWC

Mitigation options Behaviour in terms of impedance and power loss:

- Significant impedance contribution
- Need for a mitigation

Three mitigation options presented:

- External: terminating the wire with a RF Load
 - Not a solution in terms of impedance
 - > Should be considered for protection of power converters
- Internal shields:
 - Elliptical shield:
 - Best solution in terms of effective longitudinal impedance at low frequency and power loss
 - Box shield:
 - Feasible solution but several resonances above 2 GHz

Bellows and Tapers

Impedance main source after shielding

- Possibility of shielded bellows (TCDQ)
- Need for careful design of tapers

Thank you for the attention $\ensuremath{\textcircled{\odot}}$

BBWC

Leonardo Sito