Beam-Beam Wire Compensator (BBWC) Impedance studies

Beam-Beam Wire Compensation Review Meeting

CERN 14-15 October 2024

Leonardo Sito

A. Bertarelli, F. Carra, L. Gentini, L. Giacomel, B. Salvant, G. Sterbini, C. Zannini

The Beam-Beam Wire Compensator:

The impedance study focuses on a **single module**:

4 BBWC **assemblies** (1 per side of IP1 and IP5)

2 beam lines per assembly

3 BBWC modules per beam line

Tot: 12 BBWC modules per beam

The Beam-Beam Wire Compensator:

The impedance study focuses on a **single module**:

4 BBWC **assemblies** (1 per side of IP1 and IP5)

- **2 beam lines** per assembly
- **3 BBWC modules** per beam line

Tot: 12 BBWC modules per beam

Aluminum Nitride support:

- Support mechanically the wire.
- Enables better heat dissipation.

The Beam-Beam Wire Compensator:

BBWC **electromagnetic model** keeps all **significant features** of

the mechanical one: Some **considerations** on

Integration with other modules:

- 1. No stainless-steel **flanges**.
- 2. No **interconnecting pipes** with other modules.

Single module:

- 1. No stainless-steel **bolts**.
- 2. Commercial Feedthrough replaced by a **coaxial structure**.

The **BBWC module** can **move** in respect beam. (Span of movement: \pm 12.5 mm)

- **32.5 mm** \rightarrow Fully out position
- **7.5 mm** \rightarrow **Operation (end of levelling)**
- **5 mm** \rightarrow **Very conservative situation**

Beam-coupling impedance study

Particle bunch travels in an accelerator device → **Electromagnetic wake fields**

- o The wake fields **dissipate power** (Beam-Induced Heating).
- o The wake fields can **trigger instabilities**.

To quantify the wake fields' effects \rightarrow **Beam-coupling impedance**: frequency dependent complex vector (Z) quantity.

Beam-coupling impedance study

Two figures of merit:

Also a **comment** on **transverse impedance** contribution will be given.

 N_{beam} : number of particles in the beam f_0 : beam revolution frequency $Λ(pω₀)$: normalized beam spectrum

Results presented at Uppsala, [12th HL Collaboration Meeting](https://indico.cern.ch/event/1168738/timetable/#20220923)

Unshielded BBWC module

Results presented at Uppsala, [12th HL Collaboration Meeting](https://indico.cern.ch/event/1168738/timetable/#20220923)

Unshielded BBWC module

Longitudinal Effective Impedance of all **12**

Power deposition on a **single module**

LHC budget
$$
\frac{Im(Z_z)}{n}
$$
 ~ 90 m Ω
DC dissipated power: **2.1 kW**

At **7.5 mm** from the beam:

- ➢ Around **20%** of the total budget of **Longitudinal Effective Impedance**
- ➢ Around **25%** of the **power dissipated in DC**

Impedance contributions are significant, but **no showstopper is identified** provided impedance minimization iterations in the design.

Results presented at Uppsala, [12th HL Collaboration Meeting](https://indico.cern.ch/event/1168738/timetable/#20220923)

Unshielded BBWC module

We compute the **octupole threshold with BBLRC** to check **the impact of the HOMs on beam stability**

B1, positive oct. polarity, $\tau_b = 1.2$ ns, Nb=2.3e+11, M=3564, damp=0.01

Device in parking, end of levelling.

The increase of the stability threshold is well below 10A for Q'>10.

Impedance optimization options

Impedance optimization options

Option A: RF load

Driving away RF power from the wire to an external circuit, outside of the vacuum chamber.

- **Total absorption** of input RF power
	- **Minimized reflections** at the termination of the wire

Strong **attenuation of all resonances**

Option A: RF load

- **No** significant **impact** in terms of **effective impedance**
- **Worse** in terms of **power loss**

- ➢ **Not a feasible solution** in terms of minimization of **impedance** contributions.
- ➢ **RF load** at the termination of the wire should be considered for **protection of the power converters** driving the DC current in the wires.

Impedance optimization options

Option B: Elliptical Shield

Elliptical pipe shielding the wire from the beam

- ➢ Impedance contribution of the **modules** is **not limiting.**
- ➢ The impedance contribution of **tapers** has to be carefully evaluated and minimized.
- ➢ This design **might pose limitations** to the **forward physics in CMS (PPS2).**

Total budget of **Longitudinal Effective Impedance**:

- In **Operation** ~ **2.7 %**
	- **Fully out** \sim 0.3 %

Dissipated power below **10 W (below 0.5 %)**

Impedance optimization options

Option C: Box Shield

Box shield fully covering the wire and the aluminum nitride support

In terms of:

- Total budget of **Longitudinal Effective Impedance**
	- Dissipated **power**

Equal to the elliptical shield option

Option C: Box Shield

Box shield fully covering the wire and the aluminum nitride support

➢ **Resonances** above 2 GHz not present in the elliptical shield option

In terms of:

- Total budget of **Longitudinal Effective Impedance**
	- Dissipated **power**

Equal to the elliptical shield option

The interconnections

Shielding the wire → The **major impedance contribution** could come from the **transitions and interconnections:**

• **Bellows**

TCDQ collimator has:

- **1. Cardan bellows**:
	- 1. Allowing a **transverse displacement of ±20 mm**
	- 2. With **impedance shielding**
- 2. Transition from elliptical to round chambers

This option must be discussed with vacuum team

• **Tapers:**

Careful impedance design is needed to minimize impedance contribution.

https://edms.cern.ch/document/1167537/1.1 https://edms.cern.ch/document/1289320/AB

VMTAC

COCCOR

 $\sqrt{\frac{2}{3}}$

Conclusions

Unshielded **BBWC**

Mitigation options

Behaviour in terms of impedance and power loss:

- \triangleright Significant impedance contribution
- \triangleright Need for a mitigation

Three mitigation options presented:

- o External: terminating the wire with a RF Load
	- \triangleright Not a solution in terms of impedance
	- ➢ Should be considered for protection of power converters
- o Internal shields:
	- ➢ Elliptical shield:
		- Best solution in terms of effective longitudinal impedance at low frequency and power loss
	- \triangleright Box shield:
		- ➢ Feasible solution but several resonances above 2 GHz

Bellows and

Tapers Impedance main source after shielding

- ➢ Possibility of shielded bellows (TCDQ)
- ➢ Need for careful design of tapers

Thank you for the attention \odot

BBWC

Leonardo Sito