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Analysis presented in LPC seminar last month
● Document: [CMS-PAS-SMP-23-002] 

First measurement of mW from CMS
● Most precise at LHC
● In agreement with the SM 

but in tension with CDF

This seminar will focus 
on the technical aspects

Introduction
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Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section 
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come 

→ Software developments have to keep up with technical challenges 
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HL-LHC
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Missing transverse energy

Muon

The measurement is performed using the muon kinematics only

q

q’

μ

ν

W
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How we measure the W boson mass

Strategy to use large data sample and constrain theory uncertainties in-situ

Profile likelihood fit to single muon pT η, charge distribution
● 2880 bins
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Multiple analyses in one

● Z dilepton mll, pT
Z-yZ, W-like 

● Unfolding
● Helicity cross section fit
● Generator studies
● ...

Different configurations, including combined fits
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Precise treatment of uncertainties 
requires large amount of variations
● O(1000) parameters in single fit
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Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Requirements
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Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable 

→ high level 
scripts in python

Reliable & transparent
● low error rate
● reproducible 

→ git versioning; 
continuous integration

→ documentation

Requirements

Our analysis 
framework

8



Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree 

● Independent of experiment specific software
● High level physics objects 

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event
● Good for ~50% of analyses

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s 
da

ta
 f

or
m

a
ts
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Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

         months       

Primary 
data

CMSSW

Central 
production
run on Grid
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Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree 

● Independent of experiment specific software
● High level physics objects 

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event

Easy customization with additional information
● Alternate PDFs, Info for muon track fit, ...

Data tier Size (kB)
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SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s 
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

         months       

Primary 
data

CMSSW

Central 
production
run on Grid

Private 
production
run on Grid

10

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038


NanoGEN and NanoLHE

NanoAOD with only then GEN-related branches
● Developed to validate MiNNLO event generator

● Now centrally supported in CMS
● Producible directly from gridpack
● Lightweight, no detector simulation
● ~0.4kB per event

Large quantities produced
● O(100M) for MiNNLO validation
● O(10B) for EW uncertainties
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Boost 
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots 
& diagnostics

Top level analysis 
framework
WRemnants
● Covered by CI

Corrections & 
systematics
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Ran 6-7 times in 5 years

Ran on daily basis (>1000 times)
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Where we started
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High performance computing machines

Custom analysis framework executed locally
● No resubmission of failed jobs/ merging of jobs etc.
● Direct feedback on progress

Run on single high performance machine
● Reading/writing on fast NVMe SSDs

● Local or via network interface 100Gbit/s
● Reading from local CERN eos via xrootd

● Network interface 100Gbit/s

Possible upgrade for the future

● EPYC Turin machine with 384 cores/ 768 threads 

CERN MIT/Pisa

CPU 2 x EPYC 
7702

2 x EPYC 
9654

cores 128 192

threads 256 384

memory 1TB 1.5/2TB
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ROOT RDataFrame

Select objects, filter events, fill histograms
● Pythonic, declarative, graph-style analysis

● Lazy execution: perform all operations 
in parallelized single event loop

● Executed on local machine
● Plan to explore distRDF for multi-node scaling

● See RDF reference, documentation, EP seminar

Many optimizations conducted to ensure good thread scaling
●  Now fully integrated in ROOT

Boost 
Histograms

RDataFrame
~1-2 h
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https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_03009/epjconf_chep2020_03009.html
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ROOT RDataFrame

Critical parts in c++
● Functions: e.g. check if reco muon has a match to any gen muon

● Compiled at runtime using cling jitting
● And in python

● Other examples much more complex – but follow same logic
● We also tried Numba, but found less efficient and not more convenient

Boost 
Histograms

RDataFrame
~1-2 h
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ROOT RDataFrame

Critical parts in c++
● Helpers – classes that contain histograms with corrections and functions to apply 

them: e.g. reweight pileup spectrum in MC to the one in data

● And in python

● Other examples much more complex – but follow same logic

Boost 
Histograms

RDataFrame
~1-2 h
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ROOT RDataFrame

Critical parts in c++
● Often templated (e.g. for histogram bins)
● Also using Eigen and tensorflow c++ libraries

● And in python

Boost 
Histograms

RDataFrame
~1-2 h
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Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility 
● E.g. data-driven nonprompt background prediction 
● Nominal histogram is 5D

Boost 
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

All 17,280
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Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility 
● E.g. data-driven nonprompt background prediction 
● Nominal histogram is 5D
● Largest histograms with 8D and 20M bins

● For efficiency scale factor 2D smoothed in pT and uT

● ~same histograms for 16 processes

Significant memory consumption

→ For largest histogram: 2.5GB

→ For all: 13GB 

Gets much worse if flow bins can’t be disabled (as in root histograms)

Boost 
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

var. ημ 48

var. qμ 2

eig. vec. 12

All 19,906,560

All (w/ flow) 358,400,000
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Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Boost 
Histograms

RDataFrame
~1-2 h
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Solution: use std:atomic<double> with c++ boost histograms
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● But can’t use python binding directly … (cppyy vs. pybind 11) 

Boost 
Histograms

RDataFrame
~1-2 h
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Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11) 

Custom copy conversion into python boost histograms 
● Arbitrary number of axes 
● Configurable underflow/overflow bins
● Convenient (numpy like) indexing/ manipulation

Histograms stored with pickle 
● Using proxies dictionary in .hdf5 to allow lazy loading (code)
● Including meta data (e.g. number of processed events, cross section/luminosity, 

command, …)

Boost 
Histograms

RDataFrame
~1-2 h

21

https://en.cppreference.com/w/cpp/atomic/atomic
https://www.boost.org/doc/libs/1_86_0/libs/histogram/doc/html/index.html
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Boost 
Histograms

RDataFrame
~1-2 h
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
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Even better: fill full array/tensor at once, only do bin lookup once
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions 

Atomic boost histograms and tensor axes implemented in narf submodule
● More details given at ROOT Users Workshop 2022: link
● Not currently integrated in root; similar functionality in RHistogram? 

● Interest also from outside W mass analysis team

Boost 
Histograms

RDataFrame
~1-2 h
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https://github.com/bendavid/narf
https://indico.fnal.gov/event/23628/contributions/237985/
https://github.com/bendavid/narf
https://indico.fnal.gov/event/23628/contributions/237985/


Histogram benchmark

Using 400M events of CMS NanoAOD (W→μν) and filling 10 copies of pdf 
variation histograms

256 threads (2 EPYC 7702)

● Root histograms slowed down by merging step
● Memory much lower with atomic accumulation
● Factor ~4 time reduction with tensor axes due to reduced lookup
● Some additional subtleties related to cash locality

Boost 
Histograms

RDataFrame
~1-2 h
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HDF5 writer

Histograms with data, prediction, and systematic variations 
need to be casted into a tensor for final fit
● Purely python based (boost histograms, numpy, ...)
● Flexibility & efficient implementation is essential
● Perform selections/ accumulations/ other computations on histograms

● Signal selection 
● Data-driven nonprompt background estimation

● Smoothing “on-the-fly” using least squares (code)
● Modify systematic variations e.g. decorrelating/ combining

Sparse tensor implementation for unfolding

hdf5 tensor

HDF5 writer

             ~2 min

Boost 
Histograms
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https://github.com/WMass/WRemnants/blob/main/wremnants/regression.py
https://github.com/WMass/WRemnants/blob/main/wremnants/regression.py


Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers 

● Gaussian constraint nuisance parameters θ for systematic uncertainties
● Signal strength modifier μ
● Systematic variations in 3D tensor κ 

25



Tensorflow fit

RooFit via minuit insufficient 
● Limited numerical stability and efficiency 

● E.g. can not be parallelized

Tensorflow library with automatic gradient computation via back propagation for 
minimization: 
● Quasi Newton trust region based minimizer to reliably find global minimum

● Native tensorflow implementation; algorithm based on arXiv:1506.07222
● Fast, numerically accurate, stable
● Parallelized vector processing units and/or multiple threads
● Sparse tensor implementation to minimize memory consumption (if response 

matrix is close-to-diagonal, e.g. leptonic observables)
● Implemented in combineTF, see also PyHEP 2020: link

hdf5 tensor

Fitresults

Tensorflow fit

                  ~5-10 min

26

https://arxiv.org/abs/1506.07222
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Tensorflow 2 fit

Re-written in Tensorflow 2: 
● More developer-friendly due to eager execution
● Almost feature complete combineTF2 implementation 
● More efficient computatoin of hessian and hessian vector products
● Trust-krylov minimizer from SciPy, computing the gradient and hessian-vector 

product in tensorflow 2 
● I.e. not using quasi-newton methods as in the combineTF1 case

Benchmark using MIT machine
● CPU: EPYC 9654
● GPU: Nvidia A30

GPU “only” used to calculate the gradient/hessian/hessian-vector-product 

hdf5 tensor

Fitresults

Tensorflow fit

                  ~5-10 min

fit fit + covariance

CombineTF1 CPU 1m49s 3m48s

CombineTF2 CPU 34s 47s

CombineTF2 GPU 36s 39s

27

https://github.com/bendavid/narf/blob/main/scripts/fitting/combinetf2.py
https://github.com/bendavid/narf/blob/main/scripts/fitting/combinetf2.py


Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts 
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)
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Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts 
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

Solution → GitHub actions: platform for automate developer workflows
● Use continuous integration and deployment (CI/CD) pipeline 
● Same tool as used for code development instead of third party integration
● Slim and easily to set up and manage (compared to e.g. Jenkins)

28



Github CI workflow

Different analysis chains implemented
● Independent jobs run in parallel, each job contains a set of steps
● Different arguments for plotting/ fitting for good code coverage
● Investigate failed jobs directly in Github actions

A

A

A

A

29

https://github.com/WMass/WRemnants/actions
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Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

1)

2)
3)
4)

30
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data:MC
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Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks 
● Run in CI and as pre-commit hooks
● Syntax checks for python, c++, yaml, json files
● Linters: Black, Flake8, isort

Everything blinded

1)

2)
3)
4)
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Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN 

high-performance analysis machine used for this analysis

● Repository with sub modules checked out 
including large file storage (lfs) support 

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

31
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Network authentication via Kerberos, key stored in local keytab file
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Webpage support

Results initially created in local temporary folder 
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser

[...]

32

https://cms-analysis.docs.cern.ch/guidelines/other/plot_browser/
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Webpage support

Results initially created in local temporary folder 
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser
● Automatic lumi scaling for using subset of data files

[...]
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Webpage support

[...]

Plots for nuisance parameter pulls, constraints, 
and impacts produce via plotly 
● Available in interactive .html 
● See all O(1000) nuisances with more digits
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Webpage support

[...]

Plots for nuisance parameter pulls, constraints, 
and impacts produce via plotly 
● Available in interactive .html 
● See all O(1000) nuisances with more digits

Each plot is produced with a .log file
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.log files

[...]
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.log files

[...]

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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.log files
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Check exact 
event yields

Git commit hash

Command chain 
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.log files

[...]

Check exact 
event yields

Git commit hash

Local untracked 
changes

→ Each plot 
is reproducible

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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Many interesting features not discussed today

 

Other analysis ingredients
● Efficiencies

● Using tag and probe fits, smoothing of scale factors in 1D/2D
● Helicity cross section corrections & uncertainties

● Based on Eigen
● Muon calibration 

● Object to event weight variations via CDF transform 
● Recoil calibration 

● Functional fit based on JAX, evaluation with tensorflow lite c++
● ...
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Summary

 

Increasing amount of data opens new opportunities
● Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement
● RDF provides a convenient and efficient library

● Initially showstoppers observed in scaling
● Extensive work on critical parts to improve RDF and histogram implementation

● Full analysis runs in ~hours

Challenging collaborative work with increasing number of contributors
● Github CI/CD pipeline has turned out to be extremely useful
● Time savings in PR reviews, spot/avoid bugs, backtrack changes
● Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements
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Backup



Precision measurements of standard model parameters provide opportunity to 
over constrain the theory and pose stringent tests

Indirect prediction (~6MeV) more precise than direct measurement (~10MeV) 
and in tension (CDF)

→ Call for more precise measurements 
38



Lumitools

Automatic computation of integrated luminosity of processed data
● CMS data is organized by fill, run, luminosity block (~24s)

● Use .csv file containing integrated luminosity information
● Provided by the CMS BRIL group

● Processed with RDataFrame, read non-ROOT data
● Guarantees consistent luminosity calculation
● Convenient for running on subset of data

Implemented in lumitools
● Could be used standalone
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Histogram benchmark

● In the tensor/array weight-case the weights for the different systematic idxs are 
contiguous in memory by construction

● In the N+1-d histogram case it depends on the array ordering 
● TH1/2/3 and boost-histograms have fortran array ordering → systematic idx 

axis is best at the front 
● THn has C array ordering → systematic idx axis is best at the back 
● The difference is about a factor of 2 for both root and boost hists (but still > 

50% additional gain from tensor filling) 
● Largely accounted simply by skipping the extra FDIVs needed for redundant 

value-to-index conversion for the 5 axes
40



QCD multijet background estimation

Estimated from data using extended ABCD method
● Prediction from yields in sideband regions in bins 

of high relative isolation and low mT
W

● Prompt background in sideband region subtracted from simulation
● Repeated for each systematic variation ~O(1000) times

● Evaluated in fine bins in pT
μ, ημ, qμ

D=SRB

A CAx

Bx

20 40

0.15

relative
isolation

mT
W [GeV]
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QCD multijet background estimation

Smoothing each sideband region in pT
μ with exponential “on-the-fly”

● Maintain good statistical properties
● Smoothing in 5 regions, 96 bins for ημ, qμ

● Repeated for O(1000) systematic variations
● Robust and efficient calculation required

● Use polynomial in log space
● Analytic solutions using least squares

● Systematic uncertainties from eigenvector decomposition
● Everything done in ~seconds

More complex procedures tested
● E.g. using integrated Bernstein polynomials with nnls to enforce monotonicity
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How to measure the W mass with 10 MeV 
uncertainty

EP-IT Data Science Seminars

16 October 2024, CERN

David Walter (CERN) on behalf of the CMS Collaboration



 

Analysis presented in LPC seminar last month
● Document: [CMS-PAS-SMP-23-002] 

First measurement of mW from CMS
● Most precise at LHC
● In agreement with the SM 

but in tension with CDF

This seminar will focus 
on the technical aspects

Introduction

2
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Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section 
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come 

→ Software developments have to keep up with technical challenges 
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Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section 
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come 

→ Software developments have to keep up with technical challenges 

HL-LHC

3

4



 

Missing transverse energy

Muon

The measurement is performed using the muon kinematics only

q

q’

μ

ν

W
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How we measure the W boson mass

Strategy to use large data sample and constrain theory uncertainties in-situ

Profile likelihood fit to single muon pT η, charge distribution
● 2880 bins
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Multiple analyses in one

● Z dilepton mll, pT
Z-yZ, W-like 

● Unfolding
● Helicity cross section fit
● Generator studies
● ...

Different configurations, including combined fits
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Precise treatment of uncertainties 
requires large amount of variations
● O(1000) parameters in single fit
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Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Requirements

8
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Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable 

→ high level 
scripts in python

Reliable & transparent
● low error rate
● reproducible 

→ git versioning; 
continuous integration

→ documentation

Requirements

Our analysis 
framework
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Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree 

● Independent of experiment specific software
● High level physics objects 

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event
● Good for ~50% of analyses

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s 
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

         months       

Primary 
data

CMSSW

Central 
production
run on Grid
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Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree 

● Independent of experiment specific software
● High level physics objects 

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event

Easy customization with additional information
● Alternate PDFs, Info for muon track fit, ...

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50
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production
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NanoGEN and NanoLHE

NanoAOD with only then GEN-related branches
● Developed to validate MiNNLO event generator

● Now centrally supported in CMS
● Producible directly from gridpack
● Lightweight, no detector simulation
● ~0.4kB per event

Large quantities produced
● O(100M) for MiNNLO validation
● O(10B) for EW uncertainties

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000
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Boost 
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots 
& diagnostics

Top level analysis 
framework
WRemnants
● Covered by CI

Corrections & 
systematics

Nano
GEN

            ~daysMiniAOD
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AOD

CMSSW
~days

Simulation
 ~weeks/

         months       

Primary 
data

CMSSW

Central 
production
run on Grid

Private 
production
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Boost 
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots 
& diagnostics

Top level analysis 
framework
WRemnants
● Covered by CI

Corrections & 
systematics

Nano
GEN

            ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

         months       

Primary 
data

CMSSW

Central 
production
run on Grid

Private 
production
run on Grid

Ran 6-7 times in 5 years

Ran on daily basis (>1000 times)
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Where we started
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High performance computing machines

Custom analysis framework executed locally
● No resubmission of failed jobs/ merging of jobs etc.
● Direct feedback on progress

Run on single high performance machine
● Reading/writing on fast NVMe SSDs

● Local or via network interface 100Gbit/s
● Reading from local CERN eos via xrootd

● Network interface 100Gbit/s

Possible upgrade for the future

● EPYC Turin machine with 384 cores/ 768 threads 

CERN MIT/Pisa

CPU 2 x EPYC 
7702

2 x EPYC 
9654

cores 128 192

threads 256 384

memory 1TB 1.5/2TB
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ROOT RDataFrame

Select objects, filter events, fill histograms
● Pythonic, declarative, graph-style analysis

● Lazy execution: perform all operations 
in parallelized single event loop

● Executed on local machine
● Plan to explore distRDF for multi-node scaling

● See RDF reference, documentation, EP seminar

Many optimizations conducted to ensure good thread scaling
●  Now fully integrated in ROOT

Boost 
Histograms

RDataFrame
~1-2 h
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ROOT RDataFrame

Critical parts in c++
● Functions: e.g. check if reco muon has a match to any gen muon

● Compiled at runtime using cling jitting
● And in python

● Other examples much more complex – but follow same logic
● We also tried Numba, but found less efficient and not more convenient

Boost 
Histograms

RDataFrame
~1-2 h
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ROOT RDataFrame

Critical parts in c++
● Helpers – classes that contain histograms with corrections and functions to apply 

them: e.g. reweight pileup spectrum in MC to the one in data

● And in python

● Other examples much more complex – but follow same logic

Boost 
Histograms

RDataFrame
~1-2 h
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ROOT RDataFrame

Critical parts in c++
● Often templated (e.g. for histogram bins)
● Also using Eigen and tensorflow c++ libraries

● And in python

Boost 
Histograms

RDataFrame
~1-2 h

18

[...]

24



 

Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility 
● E.g. data-driven nonprompt background prediction 
● Nominal histogram is 5D

Boost 
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

All 17,280
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Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility 
● E.g. data-driven nonprompt background prediction 
● Nominal histogram is 5D
● Largest histograms with 8D and 20M bins

● For efficiency scale factor 2D smoothed in pT and uT

● ~same histograms for 16 processes

Significant memory consumption

→ For largest histogram: 2.5GB

→ For all: 13GB 

Gets much worse if flow bins can’t be disabled (as in root histograms)

Boost 
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

var. ημ 48

var. qμ 2

eig. vec. 12

All 19,906,560

All (w/ flow) 358,400,000
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Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Boost 
Histograms

RDataFrame
~1-2 h
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Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11) 

Boost 
Histograms

RDataFrame
~1-2 h
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Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11) 

Custom copy conversion into python boost histograms 
● Arbitrary number of axes 
● Configurable underflow/overflow bins
● Convenient (numpy like) indexing/ manipulation

Histograms stored with pickle 
● Using proxies dictionary in .hdf5 to allow lazy loading (code)
● Including meta data (e.g. number of processed events, cross section/luminosity, 

command, …)

Boost 
Histograms

RDataFrame
~1-2 h
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Boost 
Histograms

RDataFrame
~1-2 h
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Boost 
Histograms

RDataFrame
~1-2 h

22

31



 

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions 

Boost 
Histograms

RDataFrame
~1-2 h
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Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions 

Atomic boost histograms and tensor axes implemented in narf submodule
● More details given at ROOT Users Workshop 2022: link
● Not currently integrated in root; similar functionality in RHistogram? 

● Interest also from outside W mass analysis team

Boost 
Histograms

RDataFrame
~1-2 h
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Histogram benchmark

Using 400M events of CMS NanoAOD (W→μν) and filling 10 copies of pdf 
variation histograms

256 threads (2 EPYC 7702)

● Root histograms slowed down by merging step
● Memory much lower with atomic accumulation
● Factor ~4 time reduction with tensor axes due to reduced lookup
● Some additional subtleties related to cash locality

Boost 
Histograms

RDataFrame
~1-2 h
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HDF5 writer

Histograms with data, prediction, and systematic variations 
need to be casted into a tensor for final fit
● Purely python based (boost histograms, numpy, ...)
● Flexibility & efficient implementation is essential
● Perform selections/ accumulations/ other computations on histograms

● Signal selection 
● Data-driven nonprompt background estimation

● Smoothing “on-the-fly” using least squares (code)
● Modify systematic variations e.g. decorrelating/ combining

Sparse tensor implementation for unfolding

hdf5 tensor

HDF5 writer

             ~2 min

Boost 
Histograms
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Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers 

● Gaussian constraint nuisance parameters θ for systematic uncertainties
● Signal strength modifier μ
● Systematic variations in 3D tensor κ 
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Tensorflow fit

RooFit via minuit insufficient 
● Limited numerical stability and efficiency 

● E.g. can not be parallelized

Tensorflow library with automatic gradient computation via back propagation for 
minimization: 
● Quasi Newton trust region based minimizer to reliably find global minimum

● Native tensorflow implementation; algorithm based on arXiv:1506.07222
● Fast, numerically accurate, stable
● Parallelized vector processing units and/or multiple threads
● Sparse tensor implementation to minimize memory consumption (if response 

matrix is close-to-diagonal, e.g. leptonic observables)
● Implemented in combineTF, see also PyHEP 2020: link

hdf5 tensor

Fitresults

Tensorflow fit

                  ~5-10 min
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Tensorflow 2 fit

Re-written in Tensorflow 2: 
● More developer-friendly due to eager execution
● Almost feature complete combineTF2 implementation 
● More efficient computatoin of hessian and hessian vector products
● Trust-krylov minimizer from SciPy, computing the gradient and hessian-vector 

product in tensorflow 2 
● I.e. not using quasi-newton methods as in the combineTF1 case

Benchmark using MIT machine
● CPU: EPYC 9654
● GPU: Nvidia A30

GPU “only” used to calculate the gradient/hessian/hessian-vector-product 

hdf5 tensor

Fitresults

Tensorflow fit

                  ~5-10 min

fit fit + covariance

CombineTF1 CPU 1m49s 3m48s

CombineTF2 CPU 34s 47s

CombineTF2 GPU 36s 39s
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Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts 
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

28
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Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts 
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

Solution → GitHub actions: platform for automate developer workflows
● Use continuous integration and deployment (CI/CD) pipeline 
● Same tool as used for code development instead of third party integration
● Slim and easily to set up and manage (compared to e.g. Jenkins)

28
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Github CI workflow

Different analysis chains implemented
● Independent jobs run in parallel, each job contains a set of steps
● Different arguments for plotting/ fitting for good code coverage
● Investigate failed jobs directly in Github actions

A

A

A

A
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Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

1)

2)
3)
4)

30

43



 

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks 
● Run in CI and as pre-commit hooks
● Syntax checks for python, c++, yaml, json files
● Linters: Black, Flake8, isort

Everything blinded

1)

2)
3)
4)
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David

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN 

high-performance analysis machine used for this analysis

● Repository with sub modules checked out 
including large file storage (lfs) support 

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure
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David

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN 

high-performance analysis machine used for this analysis

● Repository with sub modules checked out 
including large file storage (lfs) support 

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure
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Webpage support

Results initially created in local temporary folder 
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser

[...]
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Webpage support

Results initially created in local temporary folder 
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser
● Automatic lumi scaling for using subset of data files

[...]
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Webpage support

[...]

Plots for nuisance parameter pulls, constraints, 
and impacts produce via plotly 
● Available in interactive .html 
● See all O(1000) nuisances with more digits
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Webpage support

[...]

Plots for nuisance parameter pulls, constraints, 
and impacts produce via plotly 
● Available in interactive .html 
● See all O(1000) nuisances with more digits

Each plot is produced with a .log file
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.log files

[...]
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.log files

[...]

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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.log files

[...]

Check exact 
event yields

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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.log files

[...]

Check exact 
event yields

Git commit hash

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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.log files

[...]

Check exact 
event yields

Git commit hash

Local untracked 
changes

→ Each plot 
is reproducible

Command chain 
used to produce 
the plot

 → Look up how 
to run specific scripts 
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Many interesting features not discussed today

 

Other analysis ingredients
● Efficiencies

● Using tag and probe fits, smoothing of scale factors in 1D/2D
● Helicity cross section corrections & uncertainties

● Based on Eigen
● Muon calibration 

● Object to event weight variations via CDF transform 
● Recoil calibration 

● Functional fit based on JAX, evaluation with tensorflow lite c++
● ...
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Summary

 

Increasing amount of data opens new opportunities
● Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement
● RDF provides a convenient and efficient library

● Initially showstoppers observed in scaling
● Extensive work on critical parts to improve RDF and histogram implementation

● Full analysis runs in ~hours

Challenging collaborative work with increasing number of contributors
● Github CI/CD pipeline has turned out to be extremely useful
● Time savings in PR reviews, spot/avoid bugs, backtrack changes
● Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements
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Backup
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Precision measurements of standard model parameters provide opportunity to 
over constrain the theory and pose stringent tests

Indirect prediction (~6MeV) more precise than direct measurement (~10MeV) 
and in tension (CDF)

→ Call for more precise measurements 
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Lumitools

Automatic computation of integrated luminosity of processed data
● CMS data is organized by fill, run, luminosity block (~24s)

● Use .csv file containing integrated luminosity information
● Provided by the CMS BRIL group

● Processed with RDataFrame, read non-ROOT data
● Guarantees consistent luminosity calculation
● Convenient for running on subset of data

Implemented in lumitools
● Could be used standalone
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Histogram benchmark

● In the tensor/array weight-case the weights for the different systematic idxs are 
contiguous in memory by construction

● In the N+1-d histogram case it depends on the array ordering 
● TH1/2/3 and boost-histograms have fortran array ordering → systematic idx 

axis is best at the front 
● THn has C array ordering → systematic idx axis is best at the back 
● The difference is about a factor of 2 for both root and boost hists (but still > 

50% additional gain from tensor filling) 
● Largely accounted simply by skipping the extra FDIVs needed for redundant 

value-to-index conversion for the 5 axes
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QCD multijet background estimation

Estimated from data using extended ABCD method
● Prediction from yields in sideband regions in bins 

of high relative isolation and low mT
W

● Prompt background in sideband region subtracted from simulation
● Repeated for each systematic variation ~O(1000) times

● Evaluated in fine bins in pT
μ, ημ, qμ

D=SRB

A CAx

Bx

20 40

0.15

relative
isolation

mT
W [GeV]
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QCD multijet background estimation

Smoothing each sideband region in pT
μ with exponential “on-the-fly”

● Maintain good statistical properties
● Smoothing in 5 regions, 96 bins for ημ, qμ

● Repeated for O(1000) systematic variations
● Robust and efficient calculation required

● Use polynomial in log space
● Analytic solutions using least squares

● Systematic uncertainties from eigenvector decomposition
● Everything done in ~seconds

More complex procedures tested
● E.g. using integrated Bernstein polynomials with nnls to enforce monotonicity
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