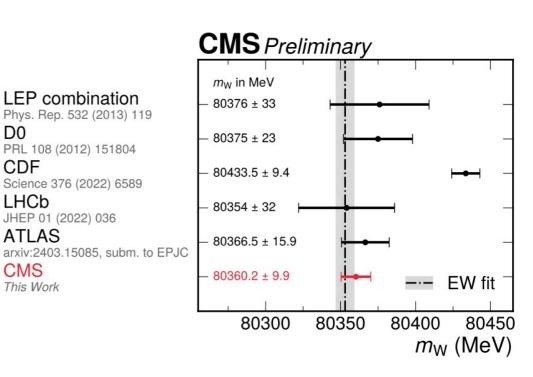
How to measure the W mass with 10 MeV uncertainty

EP-IT Data Science Seminars

16 October 2024, CERN

David Walter (CERN) on behalf of the CMS Collaboration

Introduction


Analysis presented in LPC seminar last month

• Document: [CMS-PAS-SMP-23-002]

First measurement of $m_{\ensuremath{\mathsf{W}}}$ from CMS

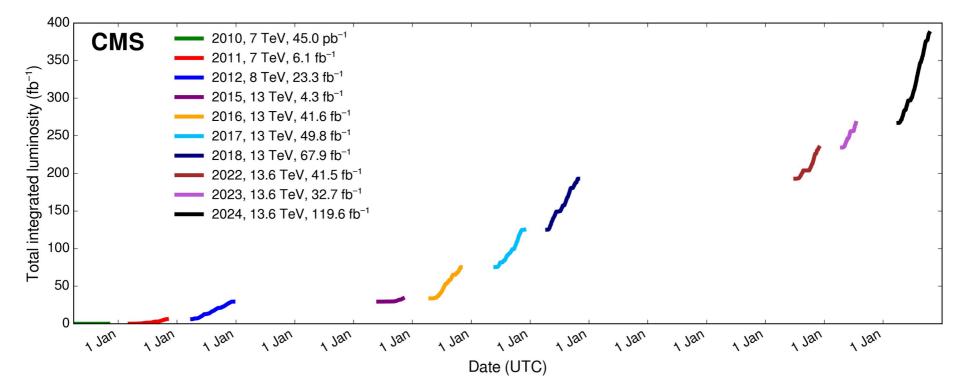
- Most precise at LHC
- In agreement with the SM but in tension with CDF

This seminar will focus on the technical aspects

Use 16.8 fb⁻¹ pp collision data at \sqrt{s} =13TeV

Large inclusive W cross section

• 300M data and 4B MC events (4 times MC statistical power)


Largest dataset used for W boson mass analysis

- Opportunity to exploit multi dimensional information
- Challenging data processing

3

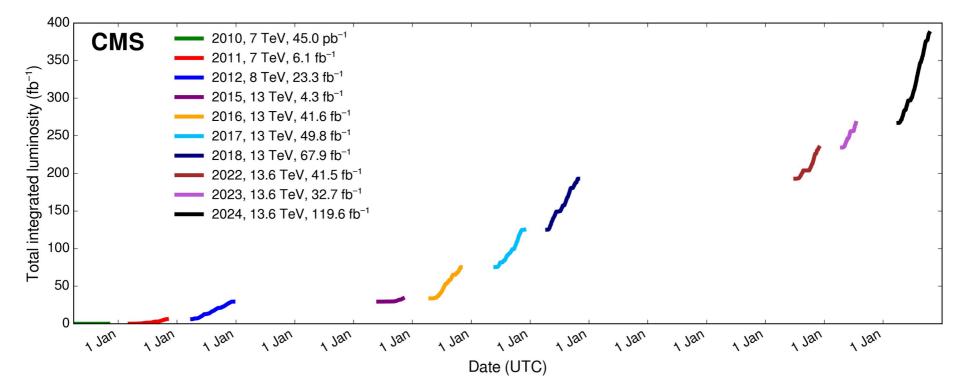
Much more data available now and in the years to come

 \rightarrow Software developments have to keep up with technical challenges

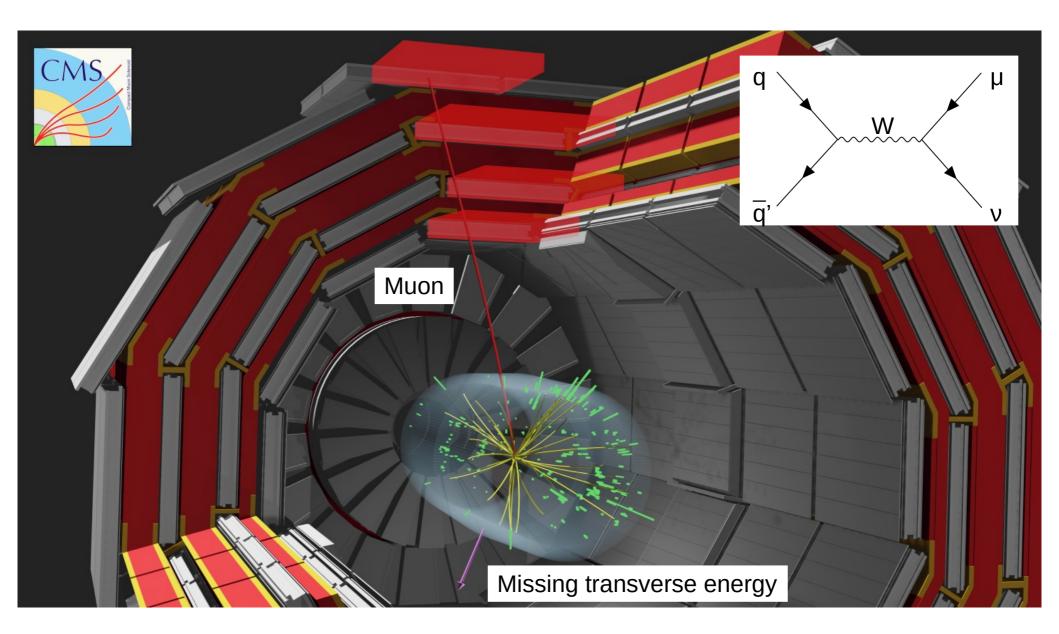
Use 16.8 fb⁻¹ pp collision data at \sqrt{s} =13TeV

Large inclusive W cross section

• 300M data and 4B MC events (4 times MC statistical power)

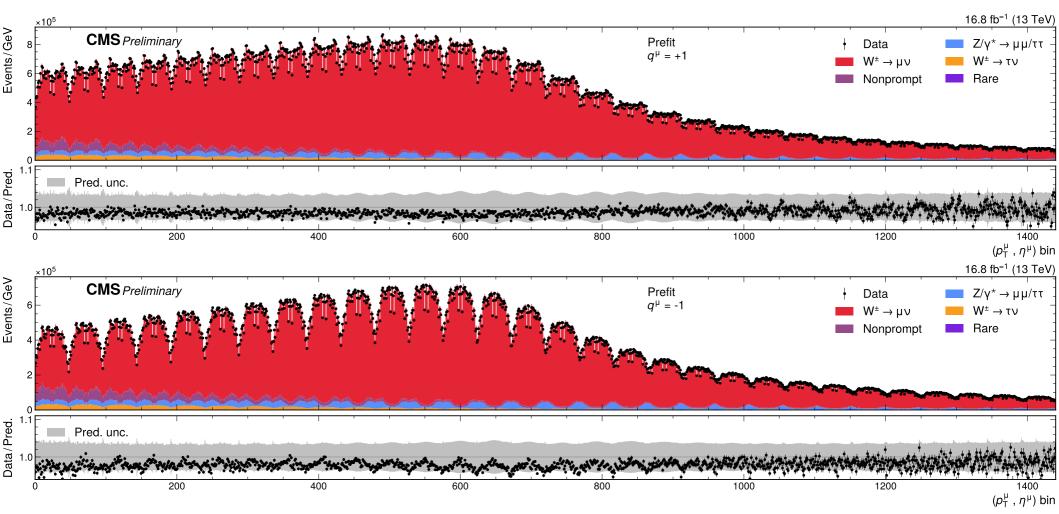

Largest dataset used for W boson mass analysis

- Opportunity to exploit multi dimensional information
- Challenging data processing


3

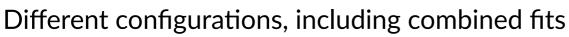
Much more data available now and in the years to come

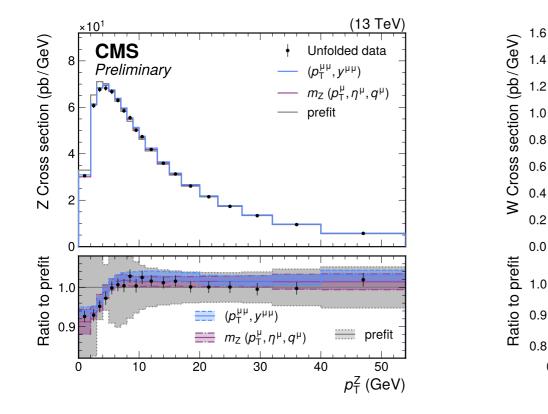
 \rightarrow Software developments have to keep up with technical challenges

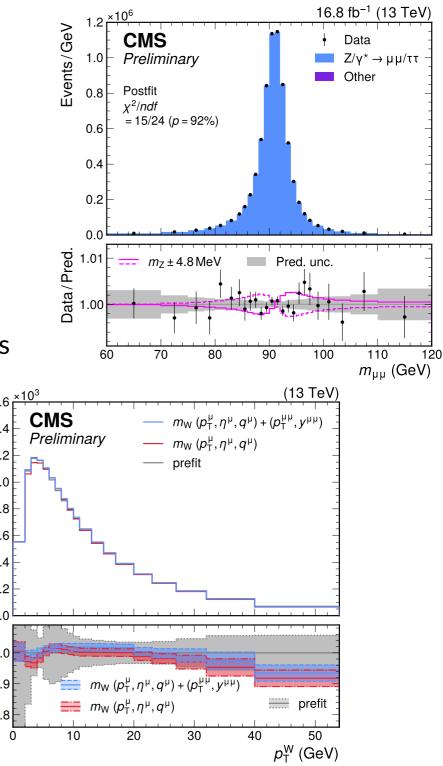


The measurement is performed using the muon kinematics only

How we measure the W boson mass


Strategy to use large data sample and constrain theory uncertainties in-situ Profile likelihood fit to single muon $p_T \eta$, charge distribution


• 2880 bins



Multiple analyses in one

- Z dilepton m_{II} , p_T^Z - y^Z , W-like
- Unfolding
- Helicity cross section fit
- Generator studies

Precise treatment of uncertainties requires large amount of variations

• O(1000) parameters in single fit

Systematic uncertainties	W-like m_Z	m _W
Muon efficiency	3127	3658
Muon eff. veto	-	531
Muon eff. syst.	343	
Muon eff. stat.	2784	
Nonprompt background	_	387
Prompt background	2	3
Muon momentum scale	338	
L1 prefire	14	
Luminosity	1	
PDF (CT18Z)	60	
Angular coefficients	177	353
W MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	_	176
Z MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	176	
PYTHIA shower $k_{\rm T}$	1	
$p_{\rm T}^{\rm V}$ modeling	22	32
Nonperturbative	4	10
Perturbative	4	8
Theory nuisance parameters	10	
c, b quark mass	4	
Higher-order EW	6	7
Zwidth	1	
Z mass	1	
W width	-	1
W mass	-	1
$\sin^2 \theta_W$	1	
Total	3750	4859

Fast analysis turnaround

→ external libraries;
 low level critical parts in c++
 → "smart" parallelism

Fast analysis turnaround

→ external libraries;
 low level critical parts in c++
 → "smart" parallelism

Fast development

- flexible
- low barrier to entry
 - easy to maintain
 - \rightarrow customizable

 \rightarrow high level scripts in python

Fast analysis turnaround

→ external libraries;
 low level critical parts in c++
 → "smart" parallelism

Reliable & transparent

- low error rate
- reproducible
- \rightarrow git versioning; continuous integration
 - \rightarrow documentation

Fast development

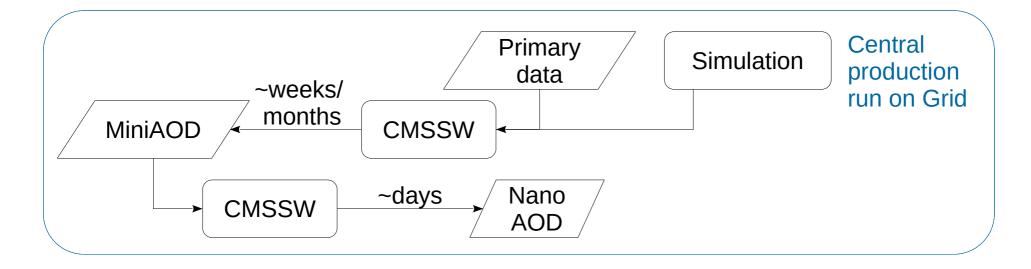
- flexible
- low barrier to entry
 - easy to maintain
 - \rightarrow customizable

 \rightarrow high level scripts in python

Fast analysis turnaround

→ external libraries;
 low level critical parts in c++
 → "smart" parallelism

Our analysis framework

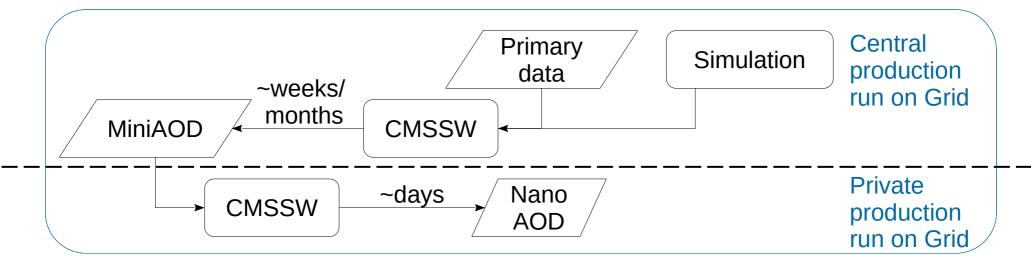

Reliable & transparent

- low error rate
- reproducible
- \rightarrow git versioning; continuous integration
 - \rightarrow documentation

Fast development

- flexible
- low barrier to entry
 - easy to maintain
 - \rightarrow customizable

 \rightarrow high level scripts in python



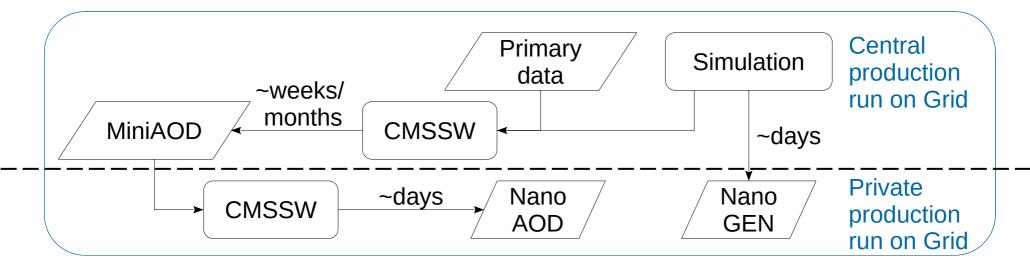
Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]

- Flat ROOT TTree
 - Independent of experiment specific software
- High level physics objects
 - (p_T , η , ϕ , ID, ... of muons, electrons, jets, ...)
- ~2kB per event
- Good for ~50% of analyses

Data tier	Size (kB)
RAW	1000
Gen	<50
SIM	1000
DIGI	3000
RECO(SIM)	3000
AOD(SIM)	400
MiniAOD(SIM)	50
NanoAOD(SIM)	2
	RAW Gen SIM DIGI RECO(SIM) AOD(SIM) MiniAOD(SIM)

Shorten the gap between data and results: NanoAOD


Central supported compact CMS event data format [0,1]

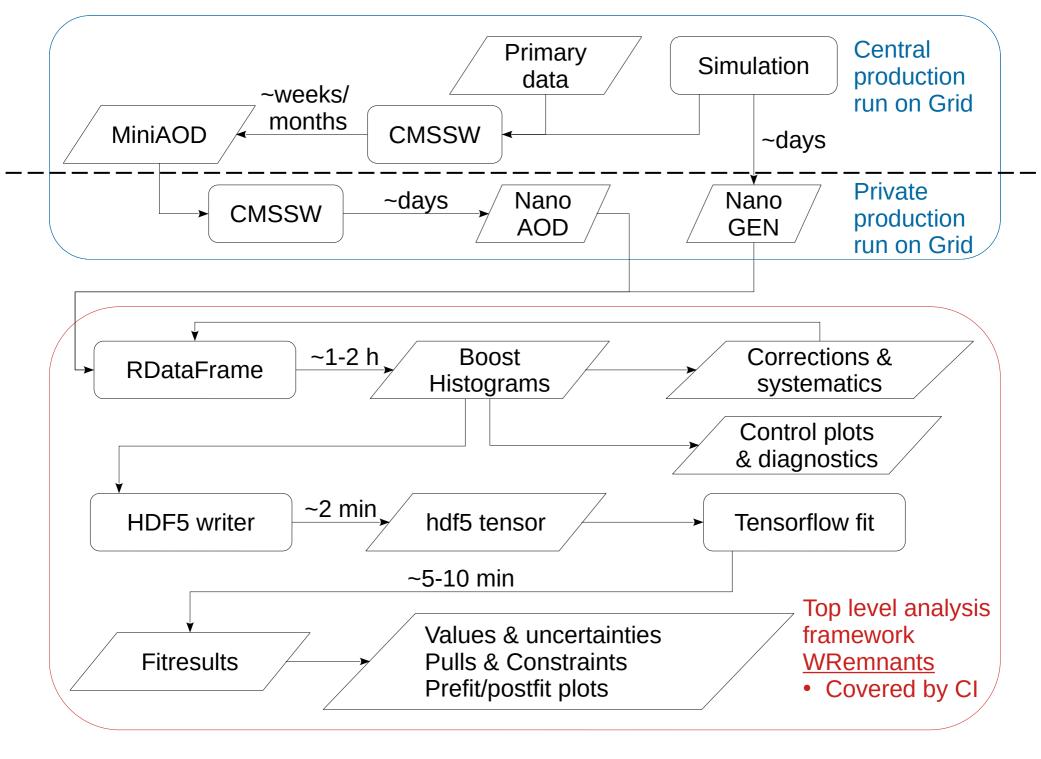
- Flat ROOT TTree
 - Independent of experiment specific software
- High level physics objects
 - (p_T , η , ϕ , ID, ... of muons, electrons, jets, ...)
- ~2kB per event

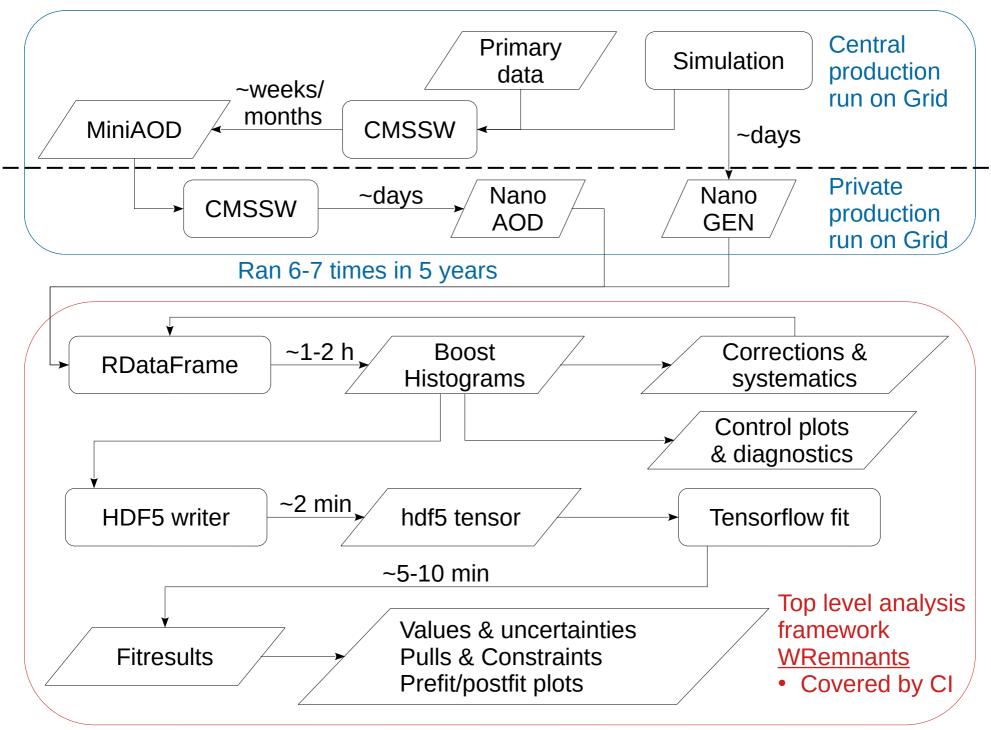
Easy customization with additional information

• Alternate PDFs, Info for muon track fit, ...

Data tier	Size (kB)
RAW	1000
Gen	<50
SIM	1000
DIGI	3000
RECO(SIM)	3000
AOD(SIM)	400
MiniAOD(SIM)	50
NanoAOD(SIM)	2
	RAW Gen SIM DIGI RECO(SIM) AOD(SIM) MiniAOD(SIM)

NanoGEN and NanoLHE

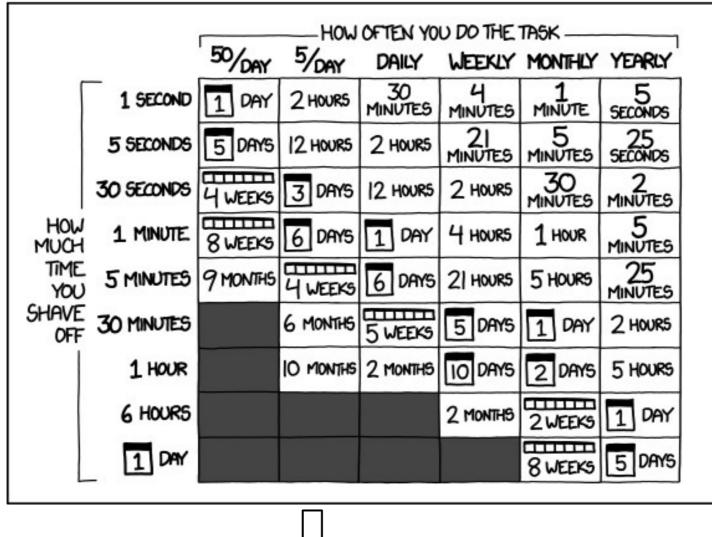

NanoAOD with only then GEN-related branches


- Developed to validate MiNNLO event generator
 - Now centrally supported in CMS
- Producible directly from gridpack
- Lightweight, no detector simulation
- ~0.4kB per event

Large quantities produced

- O(100M) for MiNNLO validation
- O(10B) for EW uncertainties

	Data tier	Size (kB)
	RAW	1000
	Gen	<50
	SIM	1000
Analysis data formats	DIGI	3000
	RECO(SIM)	3000
	AOD(SIM)	400
	MiniAOD(SIM)	50
	NanoAOD(SIM)	2
	NanoGEN	0.4



Ran on daily basis (>1000 times)

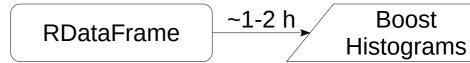
HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

HOW OFTEN YOU DO THE TASK						
	50/DAY	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY
1 SECOND	1 DAY	2 HOURS	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
5 SECONDS	5 DAYS	12 HOURS	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 HOURS	30 MINUTES	2 MINUTES
HOW 1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
YOU 5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
OFF 30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 HOURS
1 HOUR		IO MONTHS	2 MONTHS	10 DAYS	2 DAYS	5 HOURS
6 HOURS				2 MONTHS	2 WEEKS	1 DAY
1 DAY					8 WEEKS	5 DAYS

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

Where we started

High performance computing machines


Custom analysis framework executed locally

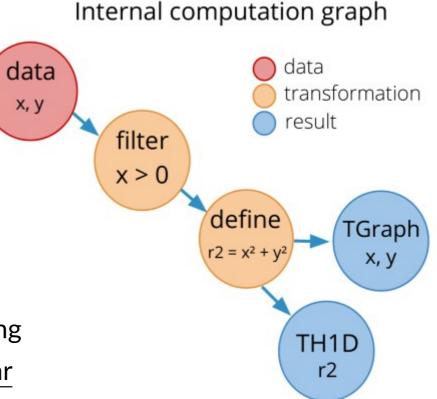
- No resubmission of failed jobs/ merging of jobs etc.
- Direct feedback on progress

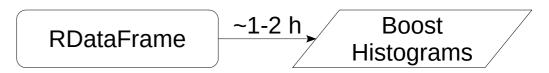
Run on single high performance machine		CERN	MIT/Pisa
 Reading/writing on fast NVMe SSDs 	CPU	2 x EPYC 7702	2 x EPYC 9654
 Local or via network interface 100Gbit/s 	cores	128	192
 Reading from local CERN eos via xrootd 	threads	256	384
 Network interface 100Gbit/s 	memory	1TB	1.5/2TB

Possible upgrade for the future

• EPYC Turin machine with 384 cores/ 768 threads

Select objects, filter events, fill histograms


• Pythonic, declarative, graph-style analysis

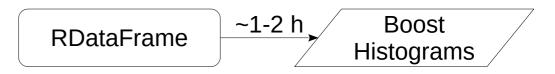

```
from ROOT import RDataFrame
df = RDataFrame(dataset);
df2 = df.Filter("x > 0")
                .Define("r2", "x*x + y*y");
rHist = df2.Histo1D("r2");
g = df2.Graph("x","y")
```

- Lazy execution: perform all operations in parallelized single event loop
- Executed on local machine
 - Plan to explore distRDF for multi-node scaling
- See RDF reference, documentation, EP seminar

Many optimizations conducted to ensure good thread scaling

• Now fully integrated in ROOT

Critical parts in c++


• Functions: e.g. check if reco muon has a match to any gen muon

```
bool hasMatchDR2(const float& eta, const float& phi, const Vec_f& vec_eta, const Vec_f& vec_phi, const float dr2 = 0.09) {
  for (unsigned int jvec = 0; jvec < vec_eta.size(); ++jvec) {
    if (deltaR2(eta, phi, vec_eta[jvec], vec_phi[jvec]) < dr2) return true;
  }
  return false;
}</pre>
```

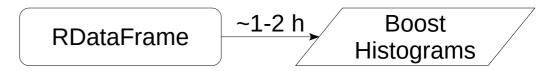
- Compiled at runtime using cling jitting
- And in python

df = df.Filter("wrem::hasMatchDR2(goodMuons_eta0,goodMuons_phi0,GenPart_eta[postfsrMuons],GenPart_phi[postfsrMuons],0.09)")

- Other examples much more complex but follow same logic
- We also tried Numba, but found less efficient and not more convenient

Critical parts in c++

• Helpers – classes that contain histograms with corrections and functions to apply them: e.g. reweight pileup spectrum in MC to the one in data


```
class pileup_helper {
public:
    pileup_helper(const TH1D &puweights) :
        puweights_(make_shared_TH1<const TH1D>(puweights)) {}
    // returns the pileup weight
    double operator() (float nTrueInt) const {
        return puweights_->GetBinContent(puweights_->FindFixBin(nTrueInt));
    }
private:
    std::shared_ptr<const TH1D> puweights_;
};
```

• And in python

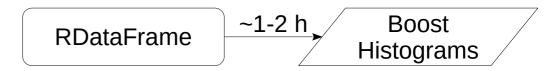
helper = ROOT.wrem.pileup_helper(puweights)

df = df.Define("weight_pu", pileup_helper, ["Pileup_nTrueInt"])

• Other examples much more complex – but follow same logic

Critical parts in c++

- Often templated (e.g. for histogram bins)
- Also using Eigen and tensorflow c++ libraries

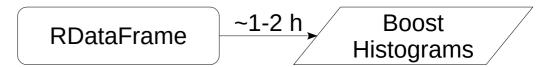

```
template <std::size t NEtaBins>
class muon_prefiring_helper_stat {
public:
 static constexpr std::size_t NVar = NEtaBins + 1;
 using value_type = Eigen::TensorFixedSize<double, Eigen::Sizes<NVar, 2>>;
 muon_prefiring_helper_stat(const muon_prefiring_helper &other) :
   parameters_(other.parameters()), hotspot_parameters_(other.hotspot_parameters()) {}
 value_type operator() (const Vec_f& eta, const Vec_f& pt, const Vec_f& phi, const Vec_i& charge, const Vec_b& looseId, double nominal_weight = 1.0) const {
       [...]
      return res;
   }
  private:
   std::shared_ptr<const TH2D> parameters_;
   std::shared_ptr<const TH2D> hotspot_parameters_;
 };
```

• And in python

helper_stat = ROOT.wrem.muon_prefiring_helper_stat[netabins](helper)

df = df.Define("weight_newMuonPrefiringSF", muon_prefiring_helper, ["Muon_correctedEta", "Muon_correctedPt", "Muon_correctedPhi", "Muon_correctedCharge", "Muon_looseId"])

Histograms

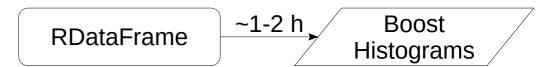


Strategy to perform computations on histograms later in analysis chain

- Allows for more flexibility
- E.g. data-driven nonprompt background prediction
- Nominal histogram is 5D

Axis	Bins
p_{T}^{μ}	30
η^{μ}	48
\mathbf{q}^{μ}	2
Ι _{rel} μ	2
m_{T}^{W}	3
All	17,280

Histograms


Strategy to perform computations on histograms later in analysis chain

• Allows for more flexibility

 E.g. data-driven nonprompt background prediction 	Axis	Bins
 Nominal histogram is 5D 	ρ _τ μ	30
 Largest histograms with 8D and 20M bins 	η ^μ	48
• For efficiency scale factor 2D smoothed in p_T and u_T	qμ	2
 ~same histograms for 16 processes 	I _{rel} μ	2
	m [™]	3
Significant memory consumption	var. η ^μ	48
\rightarrow For largest histogram: 2.5GB	var. q ^µ	2
\rightarrow For all: 13GB	eig. vec.	12
	All	19,906,560
	All (w/ flow)	358,400,000

Gets much worse if flow bins can't be disabled (as in root histograms)

Boost histograms

Previously: one root histogram copy for each thread

- But large memory consumption was a showstopper
- Long merging time when adding up at the end

Boost histograms

RDataFrame

<u>~1-2 h</u> Boost Histograms

Previously: one root histogram copy for each thread

- But large memory consumption was a showstopper
- Long merging time when adding up at the end

Solution: use <a href="mailto:std:atomic<double>">std:atomic<double> with c++ boost-histograms

- All threads write in same histogram
- But can't use python binding directly ... (cppyy vs. pybind 11)

Boost histograms

RDataFrame

Boost Histograms

~1-2 h

Previously: one root histogram copy for each thread

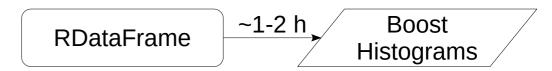
- But large memory consumption was a showstopper
- Long merging time when adding up at the end

Solution: use <a href="mailto:std:atomic<double>">std:atomic<double> with c++ boost-histograms

- All threads write in same histogram
- But can't use python binding directly ... (cppyy vs. pybind 11)

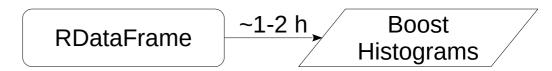
Custom copy conversion into python boost histograms

- Arbitrary number of axes
- Configurable underflow/overflow bins
- Convenient (numpy like) indexing/ manipulation

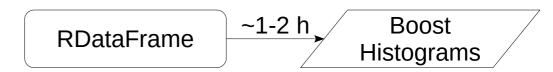

Histograms stored with pickle

21

- Using proxies dictionary in .hdf5 to allow lazy loading (code)
- Including meta data (e.g. number of processed events, cross section/luminosity, command, ...)



All systematic uncertainties represented by event weight variations Traditionally one histogram per variation

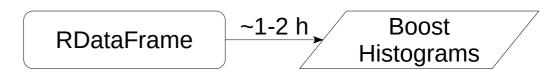

• e.g. NNPDF provides 101 alternate PDF weights \rightarrow 101 histograms

All systematic uncertainties represented by event weight variations Traditionally one histogram per variation

- e.g. NNPDF provides 101 alternate PDF weights \rightarrow 101 histograms

Better: a single histogram with an additional axis

All systematic uncertainties represented by event weight variations Traditionally one histogram per variation


• e.g. NNPDF provides 101 alternate PDF weights \rightarrow 101 histograms

Better: a single histogram with an additional axis

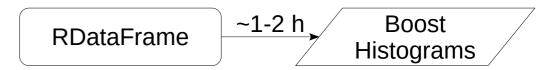
Even better: fill full array/tensor at once, only do bin lookup once

- Using Eigen tensors
- Arbitrary number of dimensions

All systematic uncertainties represented by event weight variations Traditionally one histogram per variation

• e.g. NNPDF provides 101 alternate PDF weights \rightarrow 101 histograms

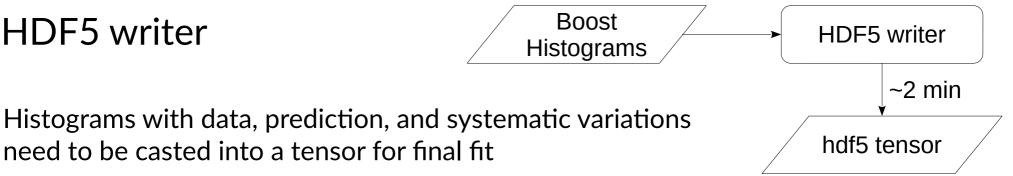
Better: a single histogram with an additional axis


Even better: fill full array/tensor at once, only do bin lookup once

- Using Eigen tensors
- Arbitrary number of dimensions

Atomic boost histograms and tensor axes implemented in <u>narf</u> submodule

- More details given at ROOT Users Workshop 2022: link
- Not currently integrated in root; similar functionality in RHistogram?
 - Interest also from outside W mass analysis team



256 threads (2 EPYC 7702)

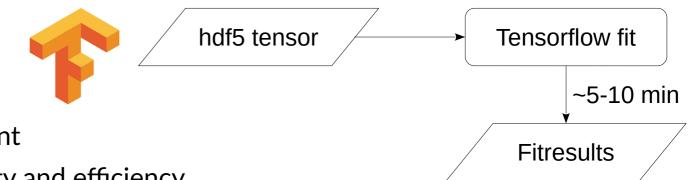
Hist Type	Hist Config	Evt. Loop	Total	CPUEff	RSS
ROOT THnD	10 × 103 × 5D	59m39s	74m05s	0.74	400GB
ROOT THnD	10 × 6D	7m54s	25m09s	0.27	405GB
Boost ("sta")	10 × 6D	7m07s	7m17s	0.90	9GB
Boost ("sta")	$10 \times (5D + 1$ -tensor)	1m54s	2m04s	0.81	9GB
Boost (''sta'')	$1 \times (5D + 2$ -tensor)	1m32s	1m42s	0.77	9GB

- Root histograms slowed down by merging step
- Memory much lower with atomic accumulation
- Factor ~4 time reduction with tensor axes due to reduced lookup
- Some additional subtleties related to cash locality

HDF5 writer

- Purely python based (boost histograms, numpy, ...)
- Flexibility & efficient implementation is essential •
- Perform selections/ accumulations/ other computations on histograms •
 - Signal selection
 - Data-driven nonprompt background estimation
 - Smoothing "on-the-fly" using least squares (code)
 - Modify systematic variations e.g. decorrelating/ combining

Sparse tensor implementation for unfolding

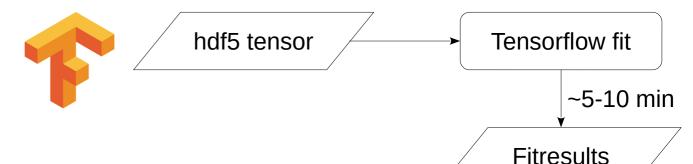

Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers

$$L = \sum_{ibin} \left(-n_{ibin}^{obs} \ln n_{ibin}^{exp} + n_{ibin}^{exp} \right) + \frac{1}{2} \sum_{ksyst} \left(\theta_{ksyst} - \theta_{ksyst}^{0} \right)^{2}$$
$$n_{ibin}^{exp} = \sum_{jproc} \mu_{jproc} n_{ibin,jproc}^{exp} \prod_{ksyst} \kappa_{ibin,jproc,ksyst}^{\theta_{ksyst}}$$

- Gaussian constraint nuisance parameters θ for systematic uncertainties
- Signal strength modifier μ
- Systematic variations in 3D tensor κ

Tensorflow fit


RooFit via minuit insufficient

- Limited numerical stability and efficiency
 - E.g. can not be parallelized

Tensorflow library with automatic gradient computation via back propagation for minimization:

- Quasi Newton trust region based minimizer to reliably find global minimum
 - Native tensorflow implementation; algorithm based on arXiv:1506.07222
- Fast, numerically accurate, stable
- Parallelized vector processing units and/or multiple threads
- Sparse tensor implementation to minimize memory consumption (if response matrix is close-to-diagonal, e.g. leptonic observables)
- Implemented in <u>combineTF</u>, see also PyHEP 2020: <u>link</u>

Tensorflow 2 fit

Re-written in Tensorflow 2:

- More developer-friendly due to eager execution
- Almost feature complete combineTF2 implementation
- More efficient computatoin of hessian and hessian vector products
- Trust-krylov minimizer from SciPy, computing the gradient and hessian-vector product in tensorflow 2
 - I.e. not using quasi-newton methods as in the combineTF1 case

Benchmark using MIT machine		fit	fit + covariance
• CPU: EPYC 9654	CombineTF1 CPU	1m49s	3m48s
	CombineTF2 CPU	34s	47s
GPU: Nvidia A30	CombineTF2 GPU	36s	39s

GPU "only" used to calculate the gradient/hessian/hessian-vector-product

Continuous integration

Common framework among all analyzers

- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

Continuous integration

Common framework among all analyzers

- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However

- Updates often unintentionally affected other parts
 - Framework was constantly broken
- Sometimes not clear where certain changes came from

Continuous integration

Common framework among all analyzers

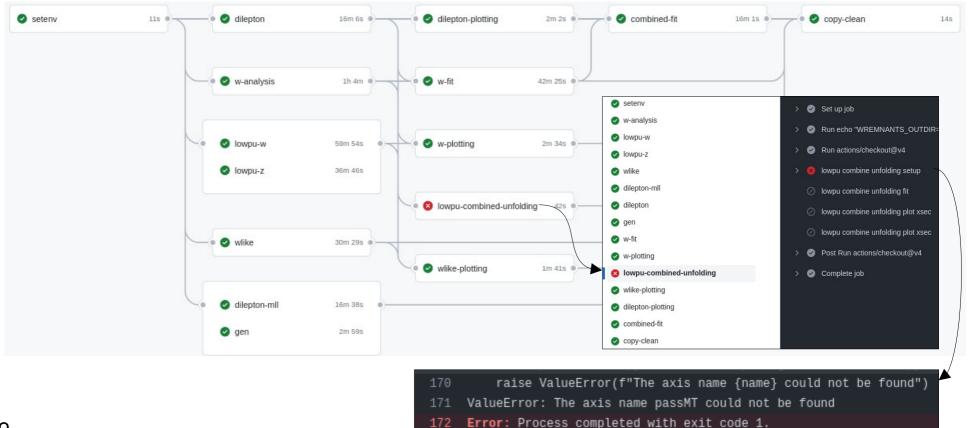
- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However

- Updates often unintentionally affected other parts
 - Framework was constantly broken
- Sometimes not clear where certain changes came from

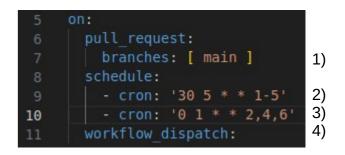
Solution \rightarrow GitHub actions: platform for automate developer workflows

- Use continuous integration and deployment (CI/CD) pipeline
- Same tool as used for code development instead of third party integration
- Slim and easily to set up and manage (compared to e.g. Jenkins)



Github CI workflow

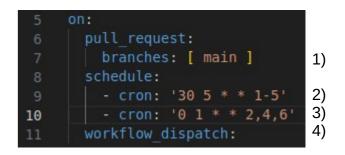
Different analysis chains implemented


- Independent jobs run in parallel, each job contains a set of steps
- Different arguments for plotting/ fitting for good code coverage
- Investigate failed jobs directly in Github actions

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)



- 2) Scheduled each morning on reduced set of files (~1%) as reference for PR
- 3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
 - All output files (e.g. histograms) stored on EOS for later use
 - Separate workflow to delete old files
- 4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
 - To test a new feature (e.g. apply new nominal calibration/correction)

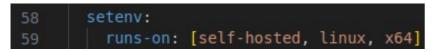
Github CI workflow

Running full analysis chain (code)

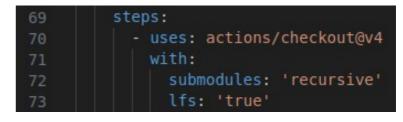
1) For each PR on reduced set of files (~1%)

- 2) Scheduled each morning on reduced set of files (~1%) as reference for PR
- 3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
 - All output files (e.g. histograms) stored on EOS for later use
 - Separate workflow to delete old files
- 4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
 - To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks


- Run in CI and as pre-commit hooks
- Syntax checks for python, c++, yaml, json files
- Linters: Black, Flake8, isort

Everything blinded


Github CI infrastructure

Maintained via service account with CMS access and eos area

• <u>Self hosted runners</u> to easy access resources and execute code on the CERN high-performance analysis machine used for this analysis

 Repository with sub modules checked out including large file storage (Ifs) support

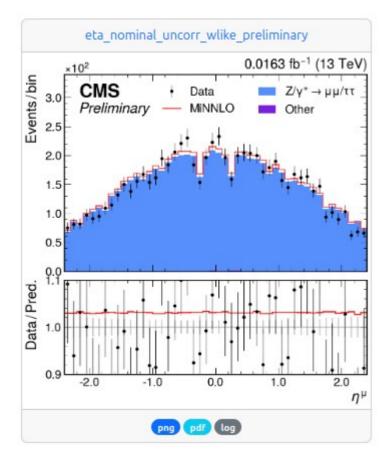
Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

Maintained via service account with CMS access and eos area

• <u>Self hosted runners</u> to easy access resources and execute code on the CERN high-performance analysis machine used for this analysis

 Repository with sub modules checked out including large file storage (Ifs) support


Network authentication via Kerberos, key stored in local keytab file

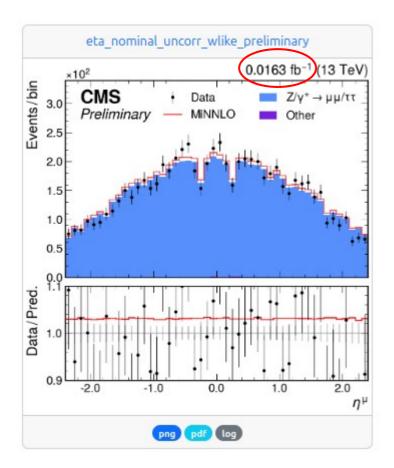
```
    name: setup kerberos

75
76
             run:
               kinit -kt ~/private/.keytab cmsmwbot@CERN.CH
77
               klist -k -t -e ~/private/.keytab
               klist
79
               echo "xrdfs root://eosuser.cern.ch// ls $EOS DIR"
               xrdfs root://eosuser.cern.ch// ls $EOS DIR
81
82
           - name: setup kerberos within singularity image
83
84
             run:
               scripts/ci/run with singularity.sh kinit -kt ~/private/.keytab cmsmwbot@CERN.CH
               scripts/ci/run with singularity.sh klist -k -t -e ~/private/.keytab
               scripts/ci/run with singularity.sh klist
87
               echo "xrdfs root://eoscms.cern.ch// ls $EOS DATA DIR"
               scripts/ci/run with singularity.sh xrdfs root://eoscms.cern.ch// ls $EOS DATA DIR
```

Results initially created in local temporary folder

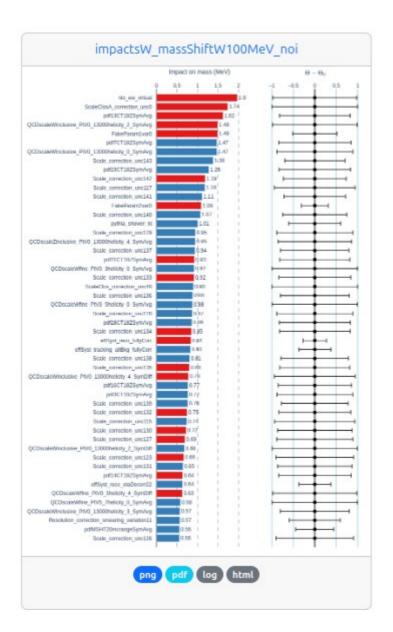
- Copied via xrdcp to CMS protected webpage
- CMS centrally maintained plot browser

Directories


- Archive
- Dispatch
- PR2XX
- PR3XX
- PR4XX
- PR500
- PR501

[...]

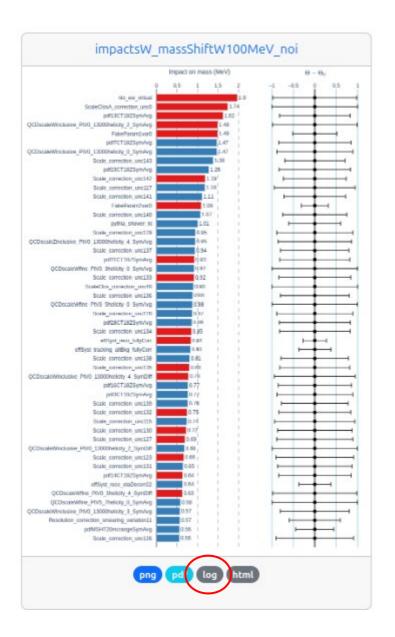
- PR553
- PR554
- ReferenceRuns
- ScheduledBuilds


Results initially created in local temporary folder

- Copied via xrdcp to CMS protected webpage
- CMS centrally maintained plot browser
- Automatic lumi scaling for using subset of data files

Directories

- Archive
- Dispatch
- PR2XX
- PR3XX
- PR4XX
- PR500
- PR501
 - [...]
- PR553
- PR554
- ReferenceRuns
- ScheduledBuilds


🐴 / WMassAnalysis / PRValidation

Directories

- Archive
- Dispatch
- PR2XX
- PR3XX
- PR4XX
- PR500
- PR501
 - [...]
- PR553
- PR554
- ReferenceRuns
- ScheduledBuilds

Plots for nuisance parameter pulls, constraints, and impacts produce via <u>plotly</u>

- Available in interactive .html
- See all O(1000) nuisances with more digits

🐔 / WMassAnalysis / PRValidation

Directories

- Archive
- Dispatch
- PR2XX
- PR3XX
- PR4XX
- PR500
- PR501
 - [...]
- PR553
- PR554
- ReferenceRuns
- ScheduledBuilds

Plots for nuisance parameter pulls, constraints, and impacts produce via <u>plotly</u>

- Available in interactive .html
- See all O(1000) nuisances with more digits

Each plot is produced with a .log file

.log files

```
Script called at 2024-10-01 15:56:53.608388
The command was: scripts/plotting/postfitPlots.py
'/scratch/dwalter/CombineStudies/test/ZMassDilepton ptll yll/fitresults 123456789.root' --
legCols 1 --eoscp -f '241001 test' --yscale '1.25'
Yield information for Stacked processes
                                 Yield Uncertainty
                       Process
0
              $\gamma$-induced 1796.97
                                                94.01
1 Z/\$\gamma^{\star}\to\tau\tau$ 1582.57
                                                77.61
2
                        Other 1630.27
                                              14.59
3
    Z/\gamma^{\star}\to\mu\mu$ 1931915.83
                                               336.74
Yield information for Unstacked processes
    Process Yield Uncertainty
Θ
       Data 1936925.64
                           2547.78
1 Inclusive 1936925.64
                            313.63
===> Sum unstacked to data is 100.00%
                                     Meta info from input file AnalysisOutput
                      {
    "time": "2024-10-01 15:39:52.107792",
    "command": "scripts/combine/setupCombine.py -i
'/scratch/dwalter/results histmaker/test/mz dilepton.hdf5' --fitvar 'ptll-yll' --lumiScale
100 --realData -o '/scratch/dwalter/CombineStudies/test'",
    "args": {
         "outfolder": "/scratch/dwalter/CombineStudies/test",
         "inputFile": [
              "/scratch/dwalter/results histmaker/test/mz dilepton.hdf5"
         ],
         "postfix": null,
         "verbose": 3,
             ...
    "git hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\"
...
    "git diff": "diff --git a/scripts/combine/saturatedGOF.py
b/scripts/combine/saturatedGOF.pv
index 1b9fb2e9..1df140a8 100644
--- a/scripts/combine/saturatedGOF.py
+++ b/scripts/combine/saturatedGOF.py
@@ -15,7 +15,7 @@ tree.GetEntry(0)
fitresult h5py = combinetf input.get fitresult(args.infile.replace(\".root\",\".hdf5\"))
meta = ioutils.pickle load h5py(fitresult h5py[\"meta\"])
-nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel info\"].values()])
+nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel info\"].values()])
ndf = nbins - tree.ndofpartial
```

		Script called at 2024-10-01 15:56:53.608388
.log files		The command was: scripts/plotting/postfitPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp -f '241001_test'yscale '1.25'
		Yield information for Stacked processes
		Process Yield Uncertainty 0 \$\gamma\$-induced 1796.97 94.01 1 Z/\$\gamma^{\\star}\to\tau\tau\$ 1582.57 77.61 2 0ther 1630.27 14.59 3 Z/\$\gamma^{\\star}\to\mu\mu\$ 1931915.83 336.74 Yield information for Unstacked processes
used to pr the plot → Look u		Process Yield Uncertainty 0 Data 1936925.64 2547.78 1 Inclusive 1936925.64 313.63
		===> Sum unstacked to data is 100.00%
	Command chain used to produce the plot → Look up how to run specific scri	"verbose": 3,
		[]
		"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\" ",

```
"git_diff": "diff --git a/scripts/combine/saturatedGOF.py
b/scripts/combine/saturatedGOF.py
index lb9fb2e9..ldf140a8 100644
--- a/scripts/combine/saturatedGOF.py
#++ b/scripts/combine/saturatedGOF.py
@@ -15,7 +15,7 @@ tree.GetEntry(0)
fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\".hdf5\"))
meta = ioutils.pickle_load_h5py(fitresult_h5py[\"meta\"])
-nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel_info\"].values()])
+nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel_info\"].values()])
ndf = nbins - tree.ndofpartial
```

.log files		<u>Script called at 2024-10-01 15:56:53.608388</u> The command was: scripts/plotting/postfitPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp -f '241001_test'yscale '1.25'
	Check exact event yields	Yield information for Stacked processes Process Yield Uncertainty 0 \$\gamma\$-induced 1796.97 94.01 1 Z/\$\gamma^{\star}\to\tau\tau\$ 1582.57 77.61 2 Other 1630.27 14.59 3 Z/\$\gamma^{\star}\to\mu\mu\$ 1931915.83 336.74 Yield information for Unstacked processes Process Yield Uncertainty 0 Data 1936925.64 2547.78 1 Inclusive 1936925.64 313.63 ===> Sum unstacked to data is 100.00%
	Command chain used to produce the plot → Look up how to run specific scri	<pre>Meta info from input file AnalysisOutput { "time": "2024-10-01 15:39:52.107792", "command": "scripts/combine/setupCombine.py -i '/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5'fitvar 'ptll-yll'lumiScale 100realData -0 '/scratch/dwalter/CombineStudies/test'", "args": { "outfolder": "/scratch/dwalter/CombineStudies/test", "inputFile": ["/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5"], "postfix": null, "verbose": 3, []</pre>

۰,

```
"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\"
```

```
"git_diff": "diff --git a/scripts/combine/saturatedGOF.py
b/scripts/combine/saturatedGOF.py
index lb9fb2e9..ldf140a8 100644
--- a/scripts/combine/saturatedGOF.py
#++ b/scripts/combine/saturatedGOF.py
@@ -15,7 +15,7 @@ tree.GetEntry(0)
fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\".hdf5\"))
meta = ioutils.pickle_load_h5py(fitresult_h5py[\"meta\"])
-nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel_info\"].values()])
+nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in
meta[\"channel_info\"].values()])
ndf = nbins - tree.ndofpartial
```

		Script called at 2024-10-01 15:56:53 608388
.log files		The command was: scripts/plotting/postfitPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp -f '241001_test'yscale '1.25'
	Check exact	Yield information for Stacked processes
	event yields	Process Yield Uncertainty 0 \$\gamma\$-induced 1796.97 94.01 1 Z/\$\gamma^{\\star}\to\tau\\tau\$ 1582.57 77.61 2 0ther 1630.27 14.59 3 Z/\$\gamma^{\\star}\to\mu\mu\$ 1931915.83 336.74
		Yield information for Unstacked processes
		Process Yield Uncertainty 0 Data 1936925.64 2547.78 1 Inclusive 1936925.64 313.63
		===> Sum unstacked to data is 100.00%
		Meta info from input file AnalysisOutput
	Command chain	· · · · · · · · · · · · · · · · · · ·
	used to produce	<pre>{ "time": "2024-10-01 15:39:52.107792", """" """" """ """" """ """ """ """ """ """ """ """" """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """" """"" """"""</pre>
	the plot	<pre>"command": "scripts/combine/setupCombine.py -i '/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5'fitvar 'ptll-yll'lumiScale 100realData -o '/scratch/dwalter/CombineStudies/test'",</pre>
		"args": { "outfolder": "/scratch/dwalter/CombineStudies/test",
	\rightarrow Look up how	"inputFile": [
	to run specific scr	
		[]
	Git commit hash	"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\" "
		, "git_diff": "diffgit a/scripts/combine/saturatedGOF.py b/scripts/combine/saturatedGOF.py index 1b9fb2e91df140a8 100644 a/scripts/combine/saturatedGOF.py +++ b/scripts/combine/saturatedGOF.py @@ -15,7 +15,7 @@ tree.GetEntry(0)
L		<pre>fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\".hdf5\")) meta = ioutils.pickle_load_h5py(fitresult_h5py[\"meta\"]) -nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) +nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) ndf = nbins - tree.ndofpartial</pre>

log flog	r	Script called at 2024-10-01 15:56:53.608388			
.log files		The command was: scripts/plotting/postfitPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp -f '241001_test'yscale '1.25'			
	Check exact	Yield information for Stacked processes			
	event yields	Process Yield Uncertainty 0 \$\gamma\$-induced 1796.97 94.01 1 Z/\$\gamma^{\\star}\to\tau\tau\$ 1582.57 77.61 2 Other 1630.27 14.59 3 Z/\$\gamma^{\\star}\to\mu\mu\$ 1931915.83 336.74			
		Yield information for Unstacked processes			
		Process Yield Uncertainty 0 Data 1936925.64 2547.78 1 Inclusive 1936925.64 313.63			
		===> Sum unstacked to data is 100.00%			
		Meta info from input file AnalysisOutput			
	Command chain	{			
	used to produce	"time": "2024-10-01 15:39:52.107792", "command": "scripts/combine/setupCombine.py -i			
	the plot	<pre>'/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5'fitvar 'ptll-yll'lumiScale 100realData -o '/scratch/dwalter/CombineStudies/test'", """""""""""""""""""""""""""""""""""</pre>			
	\rightarrow Look up how	"args": { "outfolder": "/scratch/dwalter/CombineStudies/test", "inputFile": ["/scratch/dwalter/results histmaker/test/mz dilepton.hdf5"			
	to run specific scri	pts], "postfix": null, "verbose": 3,			
		[]			
	Git commit hash	"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\"			
Local untracke changes		<pre>"git_diff": "diffgit a/scripts/combine/saturatedGOF.py b/scripts/combine/saturatedGOF.py index 1b9fb2e9ldf140a8 100644 a/scripts/combine/saturatedGOF.py +++ b/scripts/combine/saturatedGOF.py @@ -15,7 +15,7 @@ tree.GetEntry(0)</pre>			
	→ Each plot is reproducible	<pre>fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\".hdf5\")) meta = ioutils.pickle_load_h5py(fitresult_h5py[\"meta\"]) -nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) +nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) ndf = nbins - tree.ndofpartial</pre>			

Many interesting features not discussed today

Other analysis ingredients

- Efficiencies
 - Using tag and probe fits, smoothing of scale factors in 1D/2D
- Helicity cross section corrections & uncertainties
 - Based on Eigen
- Muon calibration
 - Object to event weight variations via CDF transform
- Recoil calibration

...

• Functional fit based on JAX, evaluation with tensorflow lite c++

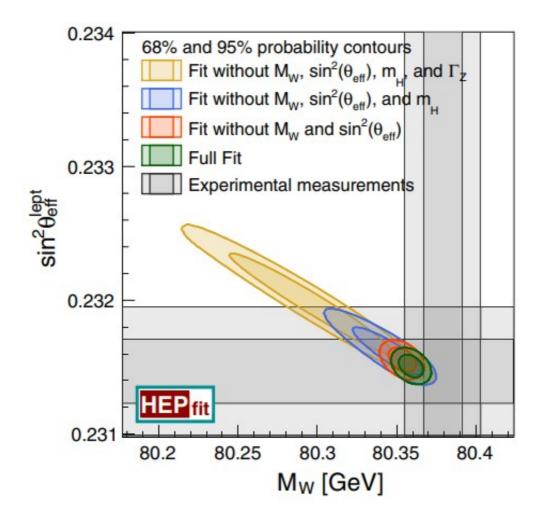
Summary

Increasing amount of data opens new opportunities

• Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement

- RDF provides a convenient and efficient library
 - Initially showstoppers observed in scaling
 - Extensive work on critical parts to improve RDF and histogram implementation
- Full analysis runs in ~hours


Challenging collaborative work with increasing number of contributors

- Github CI/CD pipeline has turned out to be extremely useful
- Time savings in PR reviews, spot/avoid bugs, backtrack changes
- Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements

Backup

Precision measurements of standard model parameters provide opportunity to over constrain the theory and pose stringent tests

Indirect prediction (~6MeV) more precise than direct measurement (~10MeV) and in tension (CDF)

 \rightarrow Call for more precise measurements

Lumitools

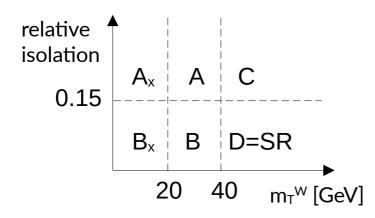
Automatic computation of integrated luminosity of processed data

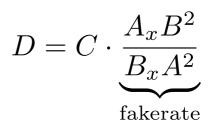
- CMS data is organized by fill, run, luminosity block (~24s)
 - Use .csv file containing integrated luminosity information
 - Provided by the CMS BRIL group
- Processed with RDataFrame, read non-ROOT data
- Guarantees consistent luminosity calculation
- Convenient for running on subset of data

Implemented in <u>lumitools</u>

• Could be used standalone

Histogram benchmark

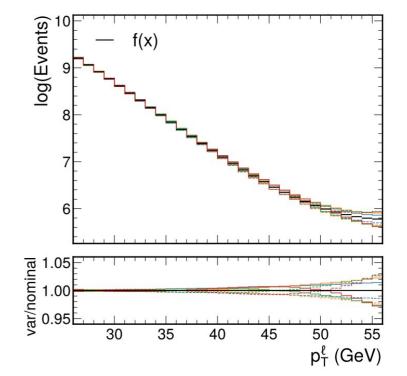

Hist Type	Hist Config	Evt. Loop	Total	CPUEff	RSS
ROOT THnD	10 × 103 × 5D	59m39s	74m05s	0.74	400GB
ROOT THnD	10 × 6D back	7m54s	25m09s	0.27	405GB
ROOT THnD	$10 \times 6D$ front	13m52s	30m27s	0.42	406GB
Boost ("sta")	10 x 6D back	7m07s	7m17s	0.90	9GB
Boost ("sta")	$10 \times 6D$ front	3m22s	3m33s	0.86	9GB
Boost ("sta")	$10 \times (5D + 1$ -tensor)	1m54s	2m04s	0.81	9GB
Boost ("sta")	$1 \times (5D + 2$ -tensor)	1m32s	1m42s	0.77	9GB


- In the tensor/array weight-case the weights for the different systematic idxs are contiguous in memory by construction
- In the N+1-d histogram case it depends on the array ordering
- TH1/2/3 and boost-histograms have fortran array ordering \rightarrow systematic idx axis is best at the front
- THn has C array ordering \rightarrow systematic idx axis is best at the back
- The difference is about a factor of 2 for both root and boost hists (but still > 50% additional gain from tensor filling)
- Largely accounted simply by skipping the extra FDIVs needed for redundant value-to-index conversion for the 5 axes

QCD multijet background estimation

Estimated from data using extended ABCD method

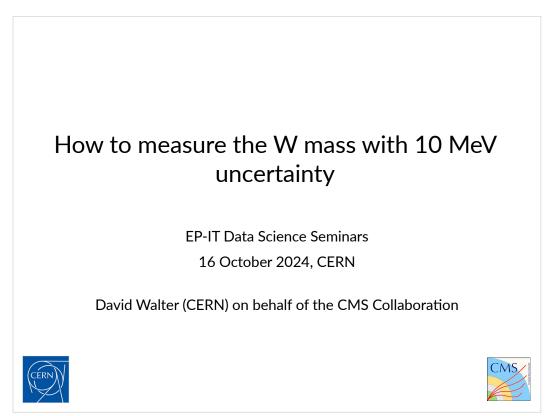
- Prediction from yields in sideband regions in bins of high relative isolation and low $m_{\rm T}{}^{\rm W}$
- Prompt background in sideband region subtracted from simulation
 - Repeated for each systematic variation ~O(1000) times
- Evaluated in fine bins in $p_{T^{\mu}},\,\eta^{\mu},\,q^{\mu}$

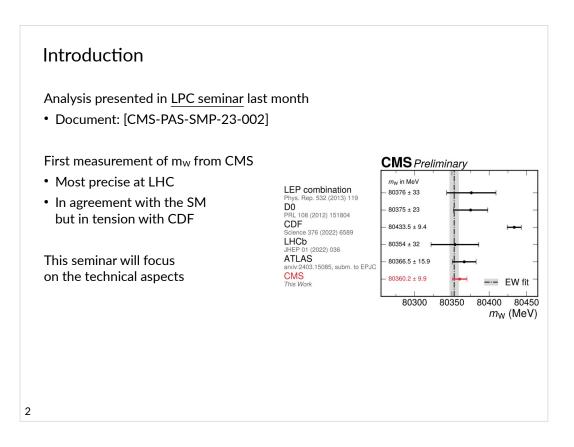


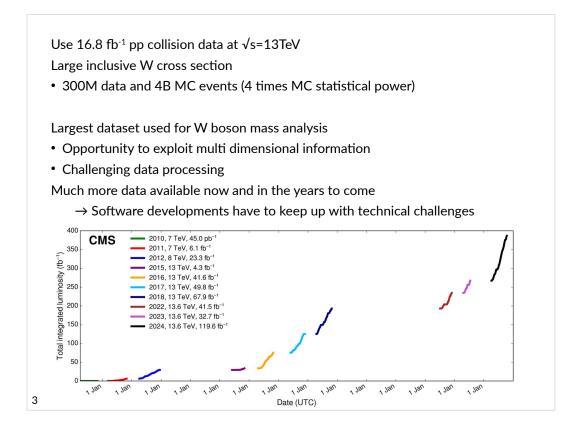
QCD multijet background estimation

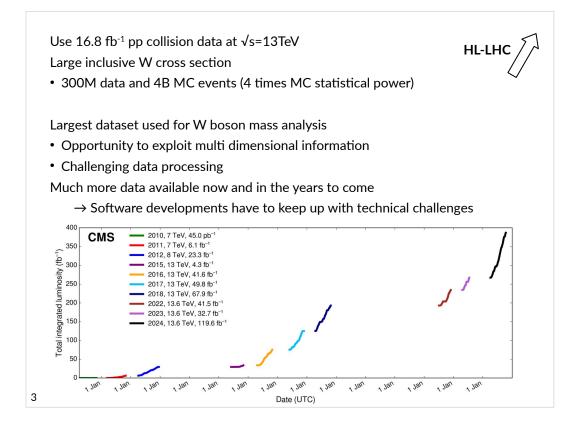
Smoothing each sideband region in $p_{T^{\mu}}$ with exponential "on-the-fly"

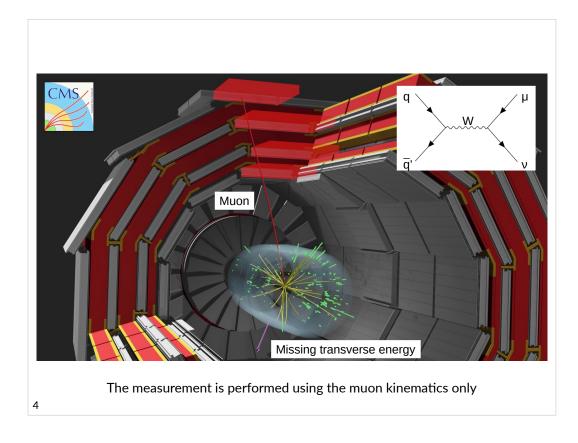
- Maintain good statistical properties
- Smoothing in 5 regions, 96 bins for $\eta^{\mu}\!,\,q^{\mu}$
- Repeated for O(1000) systematic variations
- Robust and efficient calculation required
 - Use polynomial in log space
 - Analytic solutions using least squares

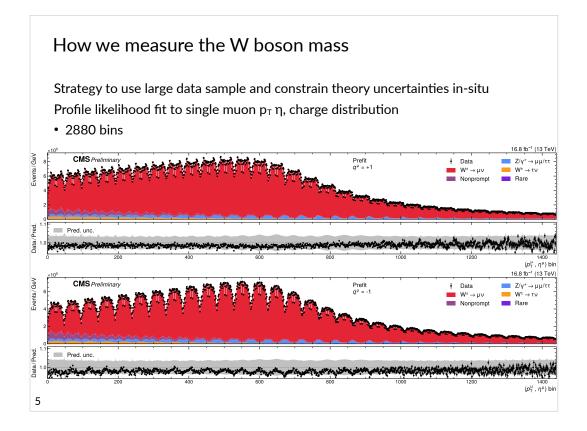

$$f_i(p_{\mathrm{T}}) = \mathrm{e}^{P_i(p_{\mathrm{T}})}$$
$$f_{\mathrm{D}}(p_{\mathrm{T}}) = \mathrm{e}^{\sum_i w_i P_i(p_{\mathrm{T}})}$$

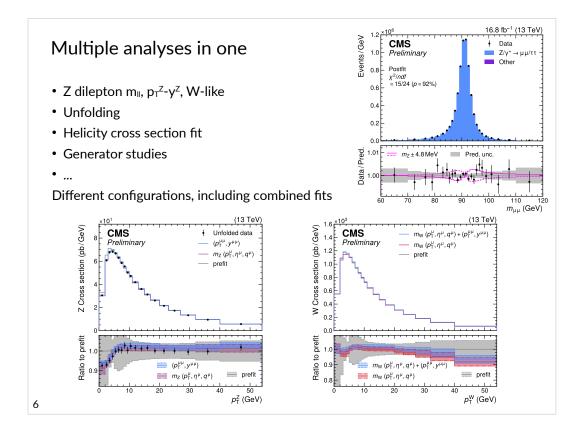


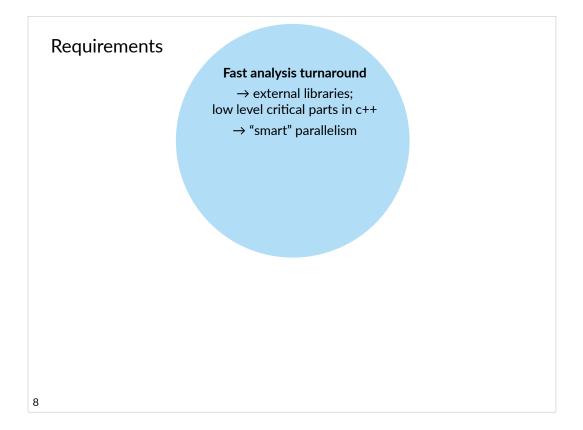

- Systematic uncertainties from eigenvector decomposition
- Everything done in ~seconds

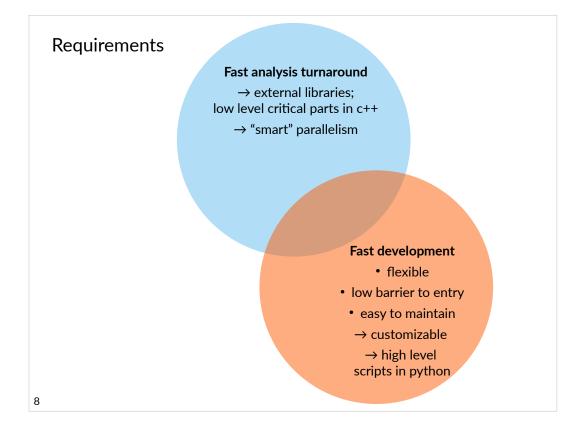

More complex procedures tested

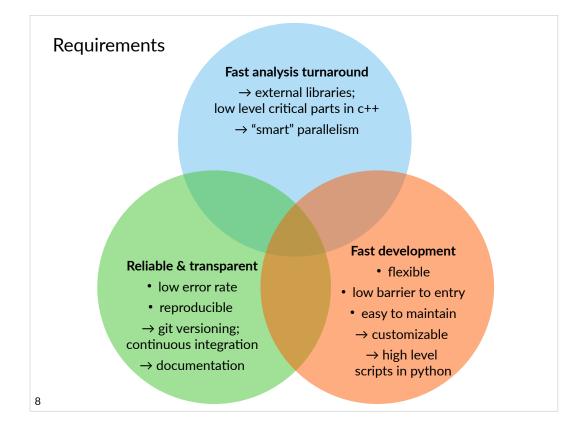

• E.g. using integrated Bernstein polynomials with <u>nnls</u> to enforce monotonicity

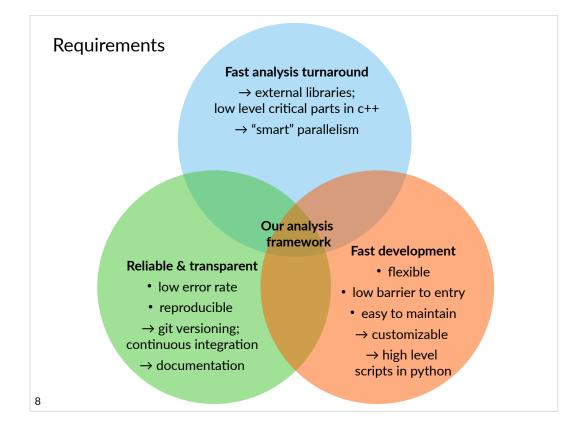


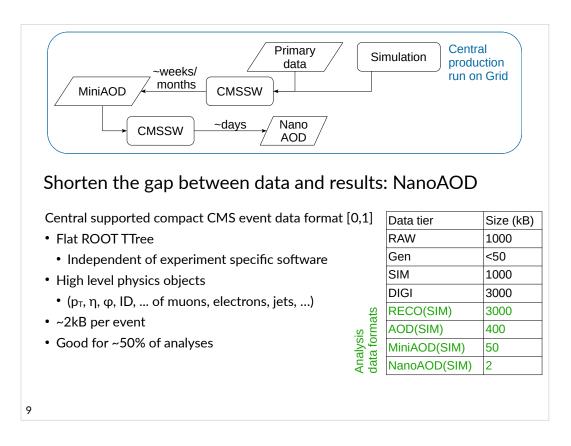


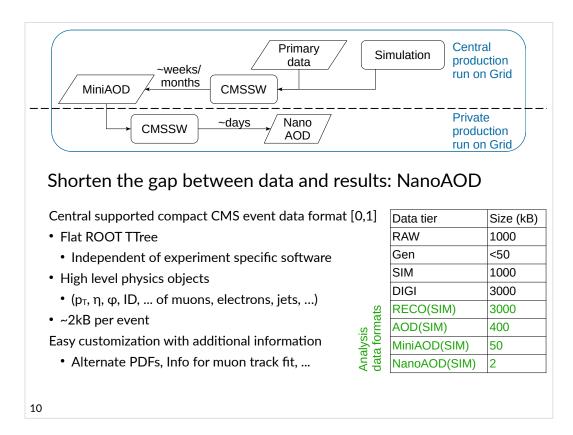


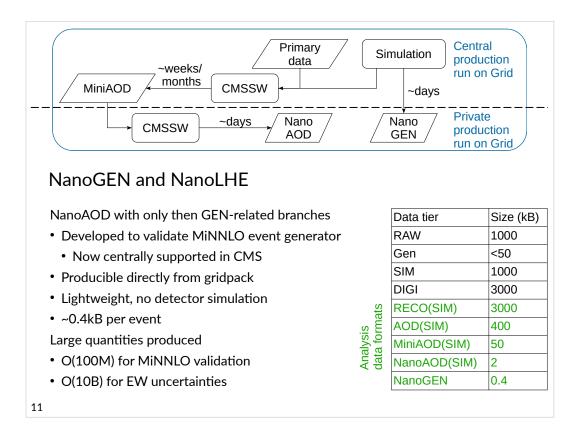


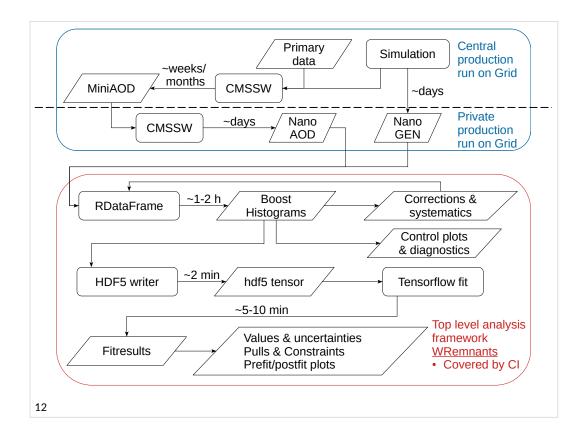


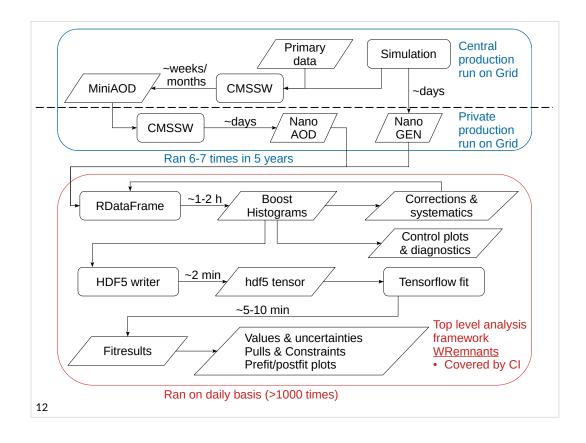


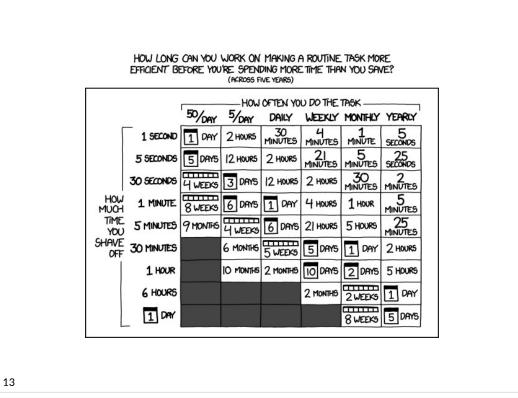

	Systematic uncertainties	W-like m_Z	$m_{\rm W}$	
	Muon efficiency	3127	3658	
	Muon eff. veto	_	531	
	Muon eff. syst.	343		
Precise treatment of uncertainties	Muon eff. stat.	2784		
requires large amount of variations	Nonprompt background	-	387	
	Prompt background	2	3	
 O(1000) parameters in single fit 	Muon momentum scale	338		
	L1 prefire	14		
	Luminosity	1		
	PDF (CT18Z)	60		
	Angular coefficients	177	353	
	W MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	_	176	
	Z MINNLO _{PS} $\mu_{\rm F}$, $\mu_{\rm R}$	176		
	PYTHIA shower $k_{\rm T}$	1		
	$p_{\rm T}^{\rm V}$ modeling	22	32	
	Nonperturbative	4	10	
	Perturbative	4	8	
	Theory nuisance parameters	10		
	c, b quark mass	4		
	Higher-order EW	6	7	
	Z width	1		
	Z mass	1		
	W width	-	1	
	W mass	-	1	
	$\sin^2 \theta_W$	1		
7	Total	3750	4859	

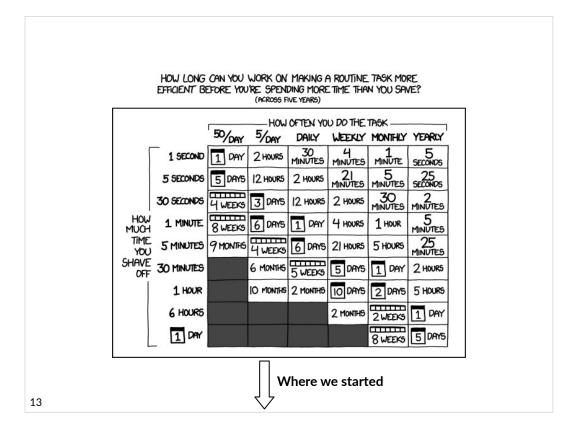




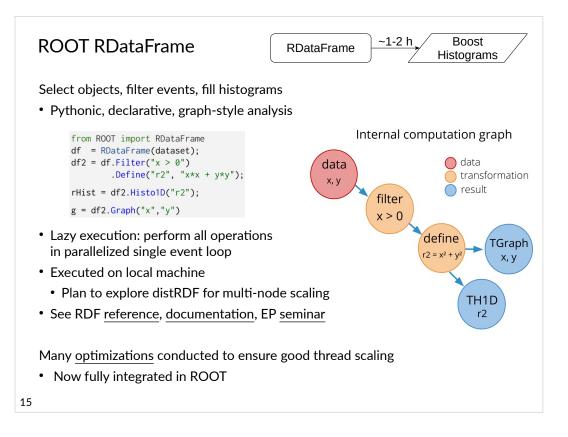


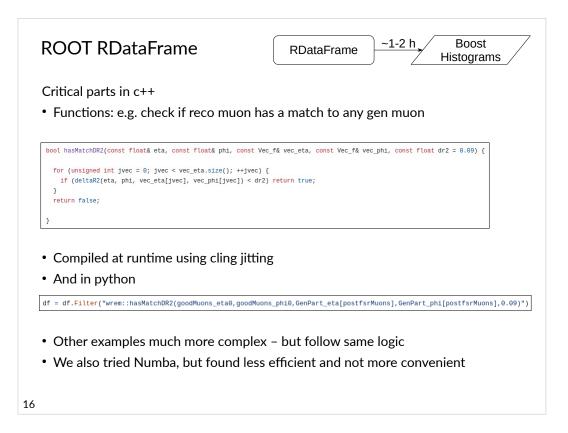


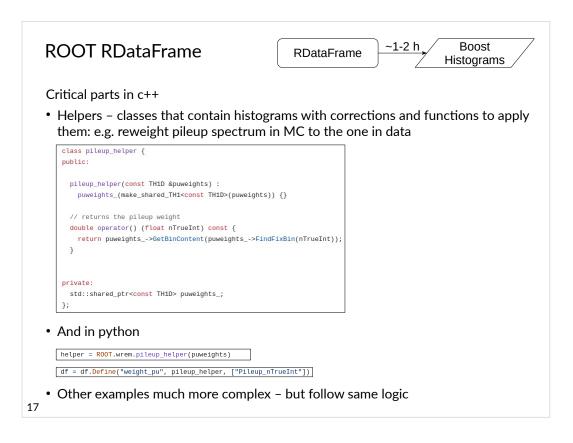


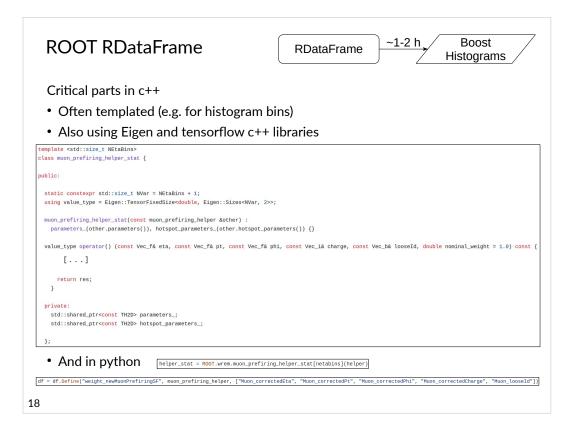


High performance computing machines

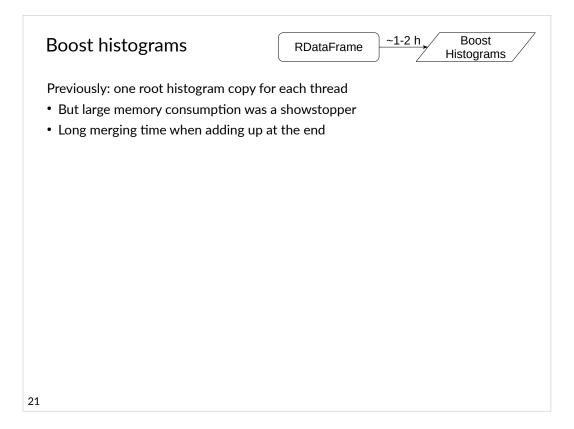

Custom analysis framework executed locally

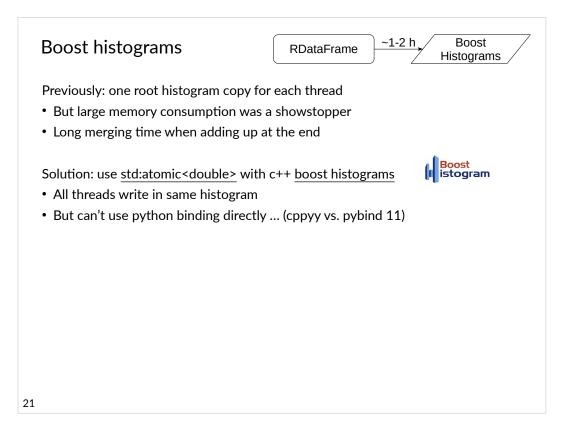

- No resubmission of failed jobs/ merging of jobs etc.
- Direct feedback on progress

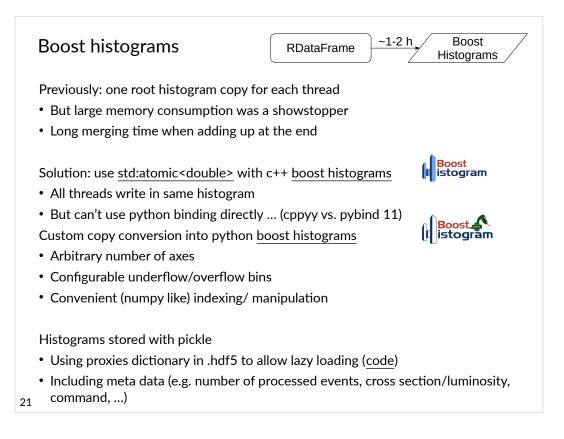

Run on single high performance machine		CERN	MIT/Pisa
 Reading/writing on fast NVMe SSDs 	CPU	2 x EPYC 7702	2 x EPYC 9654
 Local or via network interface 100Gbit/s 	cores	128	192
 Reading from local CERN eos via xrootd 	threads	256	384
 Network interface 100Gbit/s 	memory	1TB	1.5/2TB

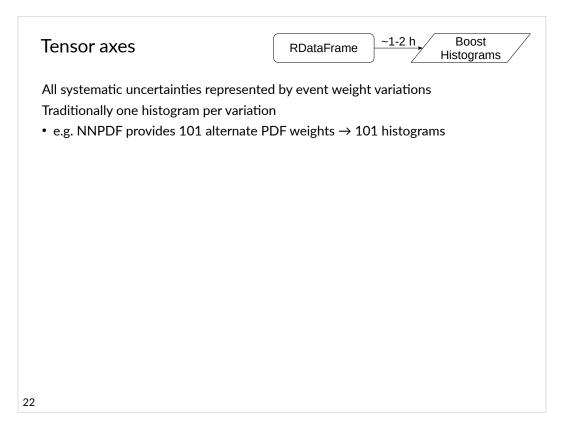

Possible upgrade for the future

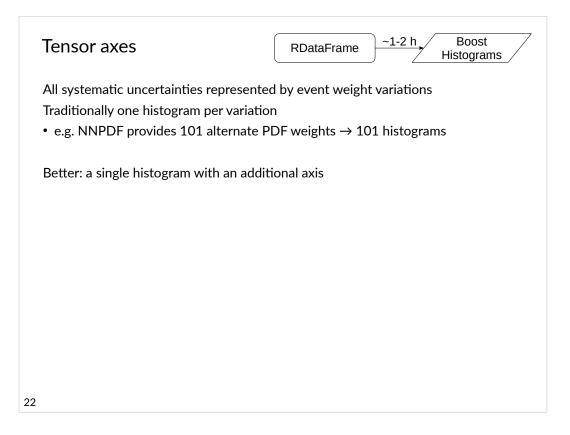
• EPYC Turin machine with 384 cores/ 768 threads

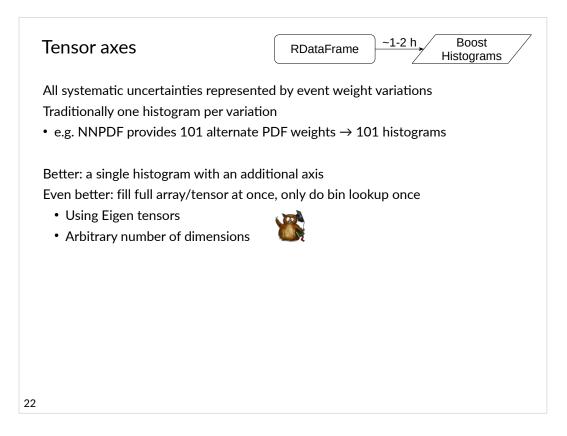







Histograms	RDataFrame ~1-		post grams
Strategy to perform computation Allows for more flexibility 	s on histograms later in analy	/sis chain	
 E.g. data-driven nonprompt bac 	ckground prediction	Axis	Bins
 Nominal histogram is 5D 		pτ ^μ	30
		η^{μ}	48
		\mathbf{q}^{μ}	2
		Ι _{rel} μ	2
		m_{T}^{W}	3
		All	17,280
19			

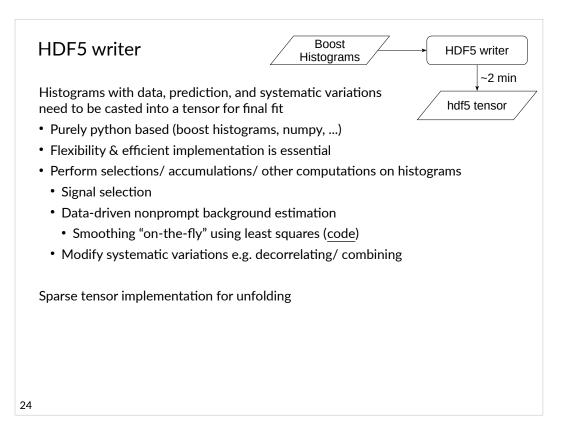

Histograms	¥	Boost stograms	
Strategy to perform computations on histograms later in analysis chain • Allows for more flexibility			
 E.g. data-driven nonprompt background prediction Naminal bistogram is 5D 	Axis	Bins	
Nominal histogram is 5D	pτ ^μ	30	
 Largest histograms with 8D and 20M bins 	η ^μ	48	
• For efficiency scale factor 2D smoothed in p_{T} and u_{T}	q ^µ	2	
 ~same histograms for 16 processes 	I _{rel} ^µ	2	
	m⊤ ^w	3	
Significant memory consumption	var. η ^μ	48	
\rightarrow For largest histogram: 2.5GB	var. q ^µ	2	
	eig. vec.	12	
\rightarrow For all: 13GB	All	19,906,560	
	All (w/ flow)	358,400,000	
Gets much worse if flow bins can't be disabled (as in root histograms)			
20			



Tensor axes	RDataFrame ~1-2 h Boost Histograms
All systematic uncertainties represented Traditionally one histogram per variatio • e.g. NNPDF provides 101 alternate P	n
Better: a single histogram with an additEven better: fill full array/tensor at onceUsing Eigen tensorsArbitrary number of dimensions	
 Atomic boost histograms and tensor ax More details given at ROOT Users We Not currently integrated in root; simil Interest also from outside W mass a 	orkshop 2022: <u>link</u> ar functionality in RHistogram?
22	

Histogram benchmark	RDataFrame	~1-2 h Boost Histograms
		40

256 threads (2 EPYC 7702)

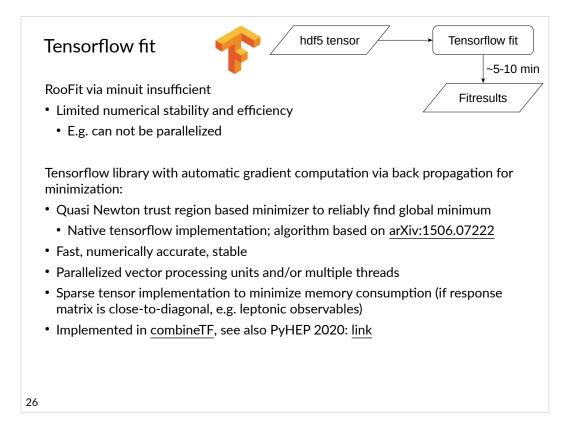

Hist Type	Hist Config	Evt. Loop	Total	CPUEff	RSS
ROOT THnD	$10 \times 103 \times 5D$	59m39s	74m05s	0.74	400GB
ROOT THnD	10 × 6D	7m54s	25m09s	0.27	405GB
Boost ("sta")	10 × 6D	7m07s	7m17s	0.90	9GB
Boost ("sta")	$10 \times (5D + 1$ -tensor)	1m54s	2m04s	0.81	9GB
Boost ("sta")	$1 \times (5D + 2$ -tensor)	1m32s	1m42s	0.77	9GB

• Root histograms slowed down by merging step

• Memory much lower with atomic accumulation

• Factor ~4 time reduction with tensor axes due to reduced lookup

• Some additional subtleties related to cash locality


Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers

$$L = \sum_{ibin} \left(-n_{ibin}^{obs} \ln n_{ibin}^{exp} + n_{ibin}^{exp} \right) + \frac{1}{2} \sum_{ksyst} \left(\theta_{ksyst} - \theta_{ksyst}^{0} \right)^{2}$$
$$n_{ibin}^{exp} = \sum_{jproc} \mu_{jproc} n_{ibin,jproc}^{exp} \prod_{ksyst} \kappa_{ibin,jproc,ksyst}^{\theta_{ksyst}}$$

- Gaussian constraint nuisance parameters θ for systematic uncertainties
- Signal strength modifier μ
- Systematic variations in 3D tensor κ

25

Tensorflow 2 fit	hdf5 tensor		Tensorflow fit
Re-written in Tensorflow 2:		,	/
 More developer-friendly due to e 	orgerevecution		Fitresults
. ,	•		
Almost feature complete combine			
 More efficient computatoin of he 	ssian and hessian vector	products	5
 Trust-krylov minimizer from SciPy product in tensorflow 2 	, computing the gradien	t and hes	sian-vector
• I.e. not using quasi-newton me	thods as in the combineT	F1 case	
		fit	fit + covariance
Benchmark using MIT machine	CombineTE1 CPU	1m49s	3m48s
• CPU: EPYC 9654	CombineTF2 CPU	34s	47s
• GPU: Nvidia A30	CombineTF2 GPU	36s	39s
GPU "only" used to calculate the gr	adient/hessian/hessian-	vector-pr	oduct
		-	
27			

Continuous integration

Common framework among all analyzers

- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

Continuous integration

Common framework among all analyzers

- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However

- Updates often unintentionally affected other parts
 - Framework was constantly broken
- Sometimes not clear where certain changes came from

Continuous integration

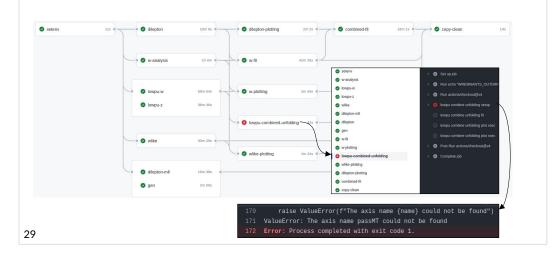
Common framework among all analyzers

- Sharing as much code as possible among different efforts
- Reuse existing code, find/avoid bugs, save time
- Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However

- Updates often unintentionally affected other parts
 - Framework was constantly broken
- Sometimes not clear where certain changes came from

Solution \rightarrow GitHub actions: platform for automate developer workflows


- Use continuous integration and deployment (CI/CD) pipeline
- • Same tool as used for code development instead of third party integration
- Slim and easily to set up and manage (compared to e.g. Jenkins)

28

Github CI workflow

Different analysis chains implemented

- Independent jobs run in parallel, each job contains a set of steps
- Different arguments for plotting/ fitting for good code coverage
- Investigate failed jobs directly in Github actions

Github CI workflow

Running full analysis chain (<u>code</u>)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

pull_request:
 branches: [main]

rkflow dispatch

10

1) 2) 3) 4)

- 3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
 - All output files (e.g. histograms) stored on EOS for later use
 - Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch

• To test a new feature (e.g. apply new nominal calibration/correction)

Github CI workflow

Running full analysis chain (<u>code</u>)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

pull_request: | branches: [main]

10

'30 5

1) 2) 3) 4)

- 3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
 - All output files (e.g. histograms) stored on EOS for later use
 - Separate workflow to delete old files
- 4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
 - To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks

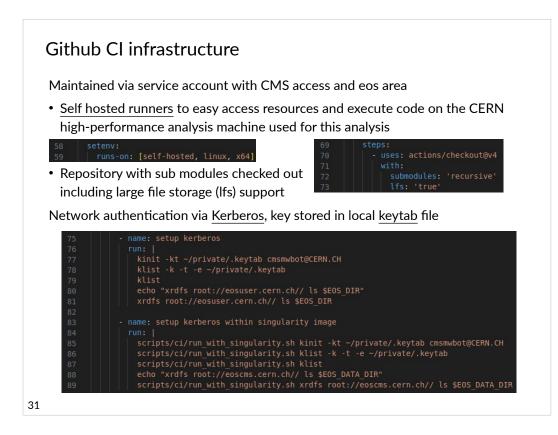
- Run in CI and as pre-commit hooks
- Syntax checks for python, c++, yaml, json files
- Linters: Black, Flake8, isort

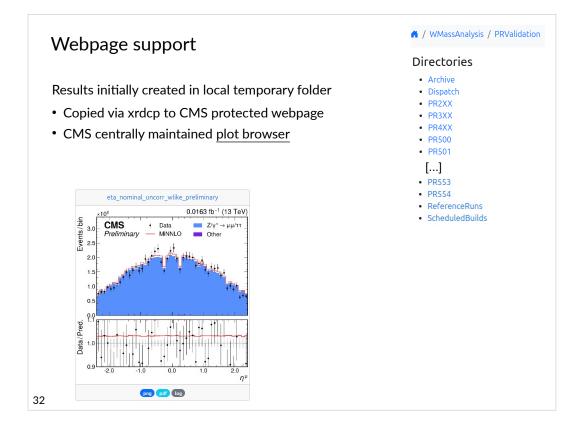
Everything blinded

30

Github CI infrastructure

Maintained via service account with CMS access and eos area

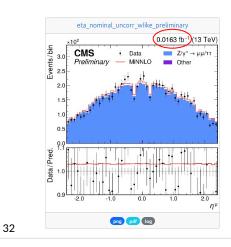

• <u>Self hosted runners</u> to easy access resources and execute code on the CERN high-performance analysis machine used for this analysis


setenv:
 runs-on: [self-hosted, linux, x64]

• Repository with sub modules checked out including large file storage (Ifs) support

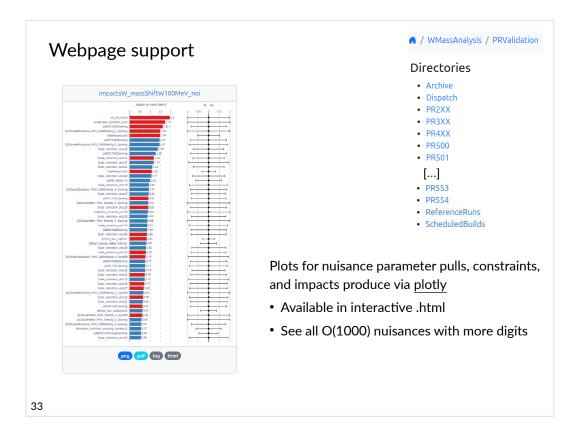
Ê.	steps:
	- uses: actions/checkout@v4
	with:
	submodules: 'recursive'
	lfs: 'true'

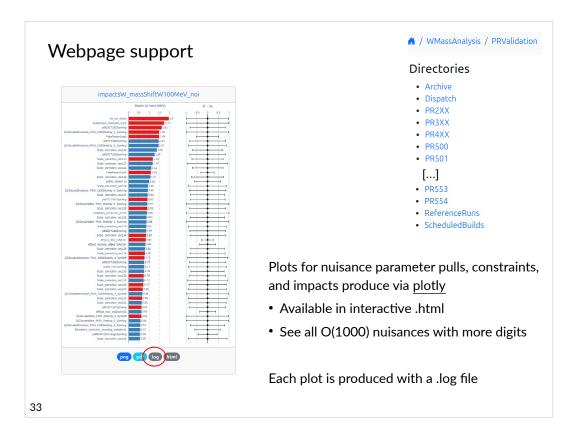
Network authentication via Kerberos, key stored in local keytab file



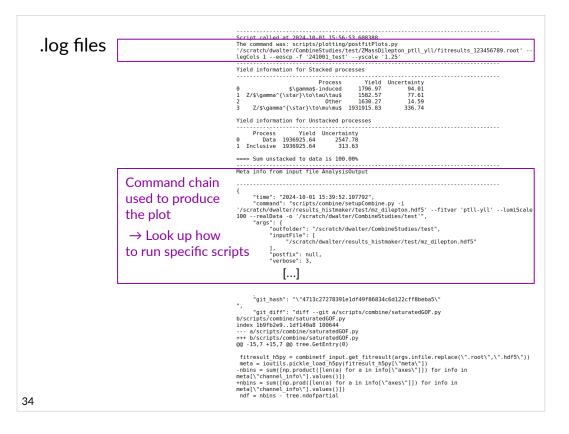
Webpage support

Results initially created in local temporary folder


- Copied via xrdcp to CMS protected webpage
- CMS centrally maintained plot browser
- Automatic lumi scaling for using subset of data files



🐔 / WMassAnalysis / PRValidation


Directories

- Archive • Dispatch
- PR2XX
- PR3XX
- PR4XX
- PR500 • PR501
- [...] • PR553
- PR554
- ReferenceRuns
- ScheduledBuilds

.log files	Script called at 2024-10-01 15:56:53.600308 The command was: scripts/plotting/postfitPlots.py '/scratch/dwalter/combineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp -f '241001_test'yscale '1.25'			
	Yield information for Stacked processes			
	Process Yield Uncertainty 0 \$\gamma^\Lstar}\to\tau\tus 158:257 77.61 2 Other 1630:27 14.59 3 Z/\$\gamma^\Lstar}\to\tus 158:21.83 336.74 Yield information for Unstacked processes \$			
	Process Yield Uncertainty 0 Data 135025.64 2547.78 1 Inclusive 195025.64 313.63			
	===> Sum unstacked to data is 100.00%			
	Meta info from input file AnalysisOutput			
	<pre>{ time": "2024-10-01 15:39:52.107792", "time": "Scripts/combine/setupCombine.py -i "/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5"fitvar 'ptll-yll'lumiScale 100realData -o 'Jscratch/dwalter/CombineStudies/test", "args": { "outfolder": "/scratch/dwalter/CombineStudies/test", "inputFile": [</pre>			
	[]			
	<pre>'git_hash': "\"4713c27278391e1df49f86834c6d122cff8beba5\" ' 'git_diff': "diffgit_a/scripts/combine/saturatedGOF.py b/scripts/combine/saturatedGOF.py index lb9fb2e9.ldf14088_100644a/scripts/combine/saturatedGOF.py +++ b/scripts/combine/saturatedGOF.py @@ -15,7 +15,7 @ tree.GetEntry(0)</pre>			
34	<pre>fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\".hdf5\")) meta = ioutils.pickle_load h5py(fitresult h5py[\"meta\"]) -nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in meta[\"channeL_info\"].values(])] +nbins = sum([np.prod([len(a) for a in info[\"axes\"]]) for info in meta[\"channeL_info\"].values(])] nmeta[\"channeL_info\"].values(])] ndf = nbins - tree.ndofpartial</pre>			

.log files	Script-called.at 2024.10.01 15:56:53 608388 The command was: scripts/pluting/postfitPlots.py '/scratch/dwalter/combineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eosco -f '241001_test'yscale '1.25'				
	Check exact event yields	Yield information for Stacked processes Process Yield Uncertainty 0 \$\gamma^{\tata}.induced 1796.97 1 2/\$\gamma^{\tata}.induced 1582.57 77.61 2 Other 1630.27 14.59 3 Z/\$\gamma^{\tata}.induced 1931915.83 336.74 Yield information for Unstacked processes Process Yield Uncertainty 0 Data 1930925.64 2547.78 1 Inclusive 1930925.64 313.63 ===> Sum unstacked to data is 100.00%			
	Command chain used to produce the plot → Look up how to run specific scr	<pre>//scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5'fitvar 'ptll-yll'lumiSca' 100realData -o '/scratch/dwalter/CombineStudies/test'*, "args": {</pre>			
<pre>"git_hash": "\"4713c27278391eldf49f86834c6d122cff8beba5\" ","git_diff": "diffgit a/scripts/combine/saturatedGOF.py b/scripts/combine/saturatedGOF.py index lb9fb2e9idf14be3 108644 a/scripts/combine/saturatedGOF.py 000000000000000000000000000000000000</pre>					
34					

.log files		<u>Script called at 2024.10.01 15:56:53 608388</u> The command was: script/plotting/postfitPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_ptll_yll/fitresults_123456789.root' legCols 1eoscp. f' 24100_test'yscale 1.25'		
	Check exact event yields	Yield information for Stacked processes Process Yield Uncertainty 0 \$\gamma^{\startheta}\gamm		
	Command chain used to produce the plot → Look up how to run specific scr	<pre>Meta info from input file AnalysisOutput { "time": "2024-10-01 15:39:52.107792", "command": "scripts/combine/setupCombine.py -i 'scratch/dwalter/results_dilepton.hdf5'fitvar 'ptll-yll'lumiScal 100realData -o 'Scratch/dwalter/CombineStudies/test'", "args": { "outfolder": "/scratch/dwalter/CombineStudies/test", "inputFile": [</pre>		
	Git commit hash	<pre>"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\" ""git_diff": "diffgit a/scripts/combine/saturatedG0F.py b/scripts/combine/saturatedG0F.py index 1b9fb2e91df140a8 100644 a/scripts/combine/saturatedG0F.py ++ b/scripts/combine/saturatedG0F.py</pre>		
<pre>@@ -15,7 +15,7 @@ tree.GetEntry(@) fitresult_h5py = combinetf_input.get_fitresult(args.infile.replace(\".root\",\". meta = ioutils.pickle_load h5py(fitresult_h5py[\"meta\"]) -nbins = sum([np.product([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values(]]) +nbins = sum([np.rrod([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values(]]) ndf = nbins - tree.ndofpartial 34</pre>				

		Seriet called at 2024 10 01 15.55.52 600200			
.log files	Script called at 2024.10.01 15:56:53.608388 The command was: scripts/plotting/opstriPlots.py '/scratch/dwalter/CombineStudies/test/ZMassDilepton_plll_yll/fitresults_123456789.root' legCols 1eoscp -f '24100_test'yscale '1.25'				
	Check exact event yields	Yield information for Stacked processes Process Yield Uncertainty 0 \$\gamma^{\star}holdeddddddddddddddddddddddddddddddddddd			
		Meta info from input file AnalysisOutput			
	Command chain used to produce the plot → Look up how Command': "2024-10-01 15:39:52.107792", "command": "scripts/combine/setupCombine.py -1 '/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5'fitvar 'ptll-yll' - "arge: { "command": "scripts/combine/setupCombine.py -1 '/scratch/dwalter/CombineStudies/test'", "arge: { "scratch/dwalter/CombineStudies/test", "inputFile": ["/scratch/dwalter/results_histmaker/test/mz_dilepton.hdf5"				
	to run specific scripts "postfix": null, "verbose": 3,				
		[]			
	Git commit hash	"git_hash": "\"4713c27278391e1df49f86834c6d122cff8beba5\"			
	Local untracked changes	<pre>"git diff": "diffgit a/scripts/combine/saturatedGOF.py b/scripts/combine/saturatedGOF.py index 1b9/b2e9ldf14088 100644 a/scripts/combine/saturatedGOF.py +++ b/scripts/combine/saturatedGOF.py @@ -15.7 +15.7 @@ tree.GetEntry(0)</pre>			
34	→ Each plot is reproducible	<pre>fitresult h5py = combinetf_input.get_fitresult[args.infile.replace(\".root\",\".hdf5\")) meta = iout[s.pickle_load h5py(fitresult.h5py(\"meta")]) -nbins = sum[[np.product([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) +nbins = sum[[np.prod([len(a) for a in info[\"axes\"]]) for info in meta[\"channel_info\"].values()]) ndf = nbins - tree.ndofpartial</pre>			

Many interesting features not discussed today

Other analysis ingredients

- Efficiencies
 - Using tag and probe fits, smoothing of scale factors in 1D/2D
- Helicity cross section corrections & uncertainties
 - Based on Eigen
- Muon calibration
 - Object to event weight variations via CDF transform
- Recoil calibration
 - Functional fit based on JAX, evaluation with tensorflow lite c++

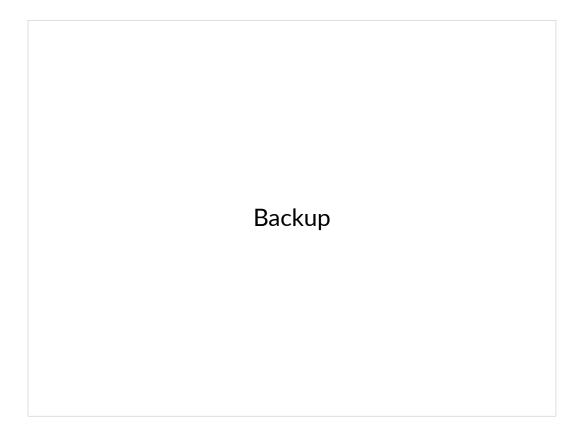
• ...

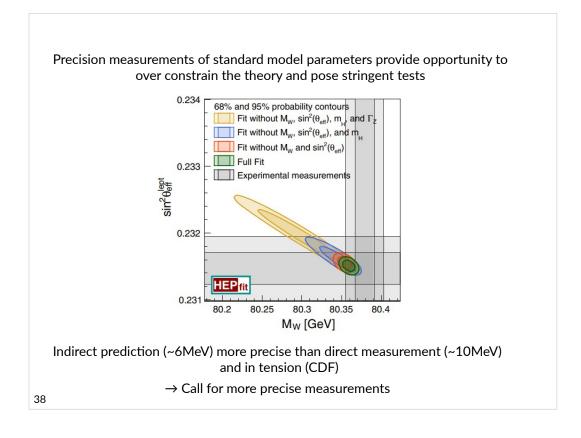
Summary

Increasing amount of data opens new opportunities

• Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement


- RDF provides a convenient and efficient library
 - Initially showstoppers observed in scaling
 - Extensive work on critical parts to improve RDF and histogram implementation
- Full analysis runs in ~hours


Challenging collaborative work with increasing number of contributors

- Github CI/CD pipeline has turned out to be extremely useful
- Time savings in PR reviews, spot/avoid bugs, backtrack changes
- Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements

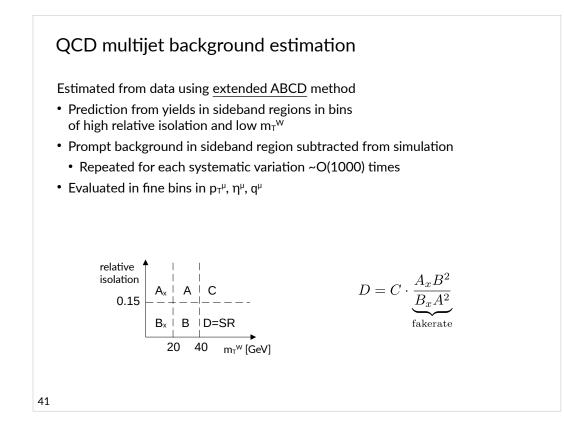
36

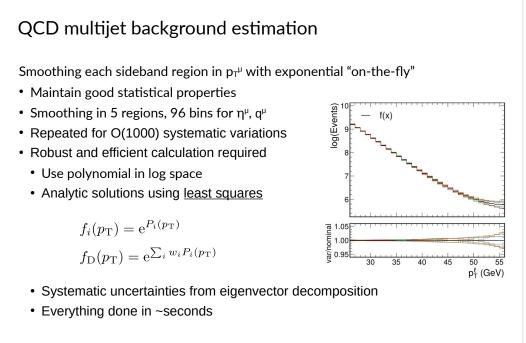
Lumitools

Automatic computation of integrated luminosity of processed data

- CMS data is organized by fill, run, luminosity block (~24s)
 - Use .csv file containing integrated luminosity information
 - Provided by the CMS BRIL group
- Processed with RDataFrame, read non-ROOT data
- Guarantees consistent luminosity calculation
- Convenient for running on subset of data

Implemented in lumitools


• Could be used standalone


Histogram benchmark

Hist Type	Hist Config	Evt. Loop	Total	CPUEff	RSS
ROOT THnD	10 × 103 × 5D	59m39s	74m05s	0.74	400GB
ROOT THnD	$10 \times 6D$ back	7m54s	25m09s	0.27	405GB
ROOT THnD	$10 \times 6D$ front	13m52s	30m27s	0.42	406GB
Boost ("sta")	$10 \times 6D$ back	7m07s	7m17s	0.90	9GB
Boost ("sta")	$10 \times 6D$ front	3m22s	3m33s	0.86	9GB
Boost ("sta")	$10 \times (5D + 1$ -tensor)	1m54s	2m04s	0.81	9GB
Boost ("sta")	$1 \times (5D + 2$ -tensor)	1m32s	1m42s	0.77	9GB

- In the tensor/array weight-case the weights for the different systematic idxs are contiguous in memory by construction
- In the N+1-d histogram case it depends on the array ordering
- TH1/2/3 and boost-histograms have fortran array ordering \rightarrow systematic idx axis is best at the front
- THn has C array ordering \rightarrow systematic idx axis is best at the back
- The difference is about a factor of 2 for both root and boost hists (but still > 50% additional gain from tensor filling)
- Largely accounted simply by skipping the extra FDIVs needed for redundant value-to-index conversion for the 5 axes

40

More complex procedures tested

• E.g. using integrated Bernstein polynomials with nnls to enforce monotonicity

42