
How to measure the W mass with 10 MeV
uncertainty

EP-IT Data Science Seminars

16 October 2024, CERN

David Walter (CERN) on behalf of the CMS Collaboration

Analysis presented in LPC seminar last month
● Document: [CMS-PAS-SMP-23-002]

First measurement of mW from CMS
● Most precise at LHC
● In agreement with the SM

but in tension with CDF

This seminar will focus
on the technical aspects

Introduction

2

https://indico.cern.ch/event/1441575/
https://cds.cern.ch/record/2910372?ln=en
https://indico.cern.ch/event/1441575/
https://cds.cern.ch/record/2910372?ln=en

Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come

→ Software developments have to keep up with technical challenges

3

Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come

→ Software developments have to keep up with technical challenges

HL-LHC

3

Missing transverse energy

Muon

The measurement is performed using the muon kinematics only

q

q’

μ

ν

W

4

How we measure the W boson mass

Strategy to use large data sample and constrain theory uncertainties in-situ

Profile likelihood fit to single muon pT η, charge distribution
● 2880 bins

0

2

4

6

8

Ev
en

ts
/G

eV

×105 16.8 fb 1 (13 TeV)

CMSPreliminary Prefit
q = +1

Data
W±

Nonprompt

Z/ /
W±

Rare

0 200 400 600 800 1000 1200 1400
(pT ,) bin

1.0

1.1

D
at

a/
Pr

ed
.

Pred. unc.

0

2

4

6

Ev
en

ts
/G

eV

×105 16.8 fb 1 (13 TeV)

CMSPreliminary Prefit
q = -1

Data
W±

Nonprompt

Z/ /
W±

Rare

0 200 400 600 800 1000 1200 1400
(pT ,) bin

1.0

1.1

D
at

a/
Pr

ed
.

Pred. unc.

5

Multiple analyses in one

● Z dilepton mll, pT
Z-yZ, W-like

● Unfolding
● Helicity cross section fit
● Generator studies
● ...

Different configurations, including combined fits

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ev
en

ts
/G

eV

×106 16.8 fb 1 (13 TeV)

CMS
Preliminary

Postfit
2/ndf

= 15/24 (p = 92%)

Data
Z/ /
Other

60 70 80 90 100 110 120
m (GeV)

1.00

1.01

D
at

a/
Pr

ed
.

mZ ± 4.8MeV Pred. unc.

0

2

4

6

8

Z
C

ro
ss

se
ct

io
n

(p
b/

G
eV

) ×101 (13 TeV)

CMS
Preliminary

Unfolded data
(pT , y)
mZ (pT , , q)
prefit

0 10 20 30 40 50
pZ

T (GeV)

0.9

1.0

R
at

io
 to

 p
re

fit

(pT , y)
mZ (pT , , q)

prefit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
C

ro
ss

se
ct

io
n

(p
b/

G
eV

) ×103 (13 TeV)

CMS
Preliminary

mW (pT , , q) + (pT , y)
mW (pT , , q)
prefit

0 10 20 30 40 50
pW

T (GeV)

0.8

0.9

1.0

R
at

io
 to

 p
re

fit

mW (pT , , q) + (pT , y)
mW (pT , , q)

prefit

6

Precise treatment of uncertainties
requires large amount of variations
● O(1000) parameters in single fit

7

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Requirements

8

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Requirements

8

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Reliable & transparent
● low error rate
● reproducible

→ git versioning;
continuous integration

→ documentation

Requirements

8

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Reliable & transparent
● low error rate
● reproducible

→ git versioning;
continuous integration

→ documentation

Requirements

Our analysis
framework

8

Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree

● Independent of experiment specific software
● High level physics objects

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event
● Good for ~50% of analyses

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

9

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038

Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree

● Independent of experiment specific software
● High level physics objects

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event

Easy customization with additional information
● Alternate PDFs, Info for muon track fit, ...

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

10

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038

NanoGEN and NanoLHE

NanoAOD with only then GEN-related branches
● Developed to validate MiNNLO event generator

● Now centrally supported in CMS
● Producible directly from gridpack
● Lightweight, no detector simulation
● ~0.4kB per event

Large quantities produced
● O(100M) for MiNNLO validation
● O(10B) for EW uncertainties

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2

NanoGEN 0.4

A
na

ly
si

s
da

ta
 f

or
m

a
ts

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

11

Boost
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots
& diagnostics

Top level analysis
framework
WRemnants
● Covered by CI

Corrections &
systematics

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

12

https://github.com/WMass/WRemnants
https://github.com/WMass/WRemnants

Boost
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots
& diagnostics

Top level analysis
framework
WRemnants
● Covered by CI

Corrections &
systematics

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

Ran 6-7 times in 5 years

Ran on daily basis (>1000 times)
12

https://github.com/WMass/WRemnants
https://github.com/WMass/WRemnants

13

Where we started
13

High performance computing machines

Custom analysis framework executed locally
● No resubmission of failed jobs/ merging of jobs etc.
● Direct feedback on progress

Run on single high performance machine
● Reading/writing on fast NVMe SSDs

● Local or via network interface 100Gbit/s
● Reading from local CERN eos via xrootd

● Network interface 100Gbit/s

Possible upgrade for the future

● EPYC Turin machine with 384 cores/ 768 threads

CERN MIT/Pisa

CPU 2 x EPYC
7702

2 x EPYC
9654

cores 128 192

threads 256 384

memory 1TB 1.5/2TB

14

ROOT RDataFrame

Select objects, filter events, fill histograms
● Pythonic, declarative, graph-style analysis

● Lazy execution: perform all operations
in parallelized single event loop

● Executed on local machine
● Plan to explore distRDF for multi-node scaling

● See RDF reference, documentation, EP seminar

Many optimizations conducted to ensure good thread scaling
● Now fully integrated in ROOT

Boost
Histograms

RDataFrame
~1-2 h

15

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_03009/epjconf_chep2020_03009.html
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/849610/
https://indico.cern.ch/event/1018696/#1-scaling-optimizations-and-an
https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_03009/epjconf_chep2020_03009.html
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/849610/
https://indico.cern.ch/event/1018696/#1-scaling-optimizations-and-an

ROOT RDataFrame

Critical parts in c++
● Functions: e.g. check if reco muon has a match to any gen muon

● Compiled at runtime using cling jitting
● And in python

● Other examples much more complex – but follow same logic
● We also tried Numba, but found less efficient and not more convenient

Boost
Histograms

RDataFrame
~1-2 h

16

ROOT RDataFrame

Critical parts in c++
● Helpers – classes that contain histograms with corrections and functions to apply

them: e.g. reweight pileup spectrum in MC to the one in data

● And in python

● Other examples much more complex – but follow same logic

Boost
Histograms

RDataFrame
~1-2 h

17

ROOT RDataFrame

Critical parts in c++
● Often templated (e.g. for histogram bins)
● Also using Eigen and tensorflow c++ libraries

● And in python

Boost
Histograms

RDataFrame
~1-2 h

18

[...]

Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility
● E.g. data-driven nonprompt background prediction
● Nominal histogram is 5D

Boost
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

All 17,280

19

Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility
● E.g. data-driven nonprompt background prediction
● Nominal histogram is 5D
● Largest histograms with 8D and 20M bins

● For efficiency scale factor 2D smoothed in pT and uT

● ~same histograms for 16 processes

Significant memory consumption

→ For largest histogram: 2.5GB

→ For all: 13GB

Gets much worse if flow bins can’t be disabled (as in root histograms)

Boost
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

var. ημ 48

var. qμ 2

eig. vec. 12

All 19,906,560

All (w/ flow) 358,400,000

20

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Boost
Histograms

RDataFrame
~1-2 h

21

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11)

Boost
Histograms

RDataFrame
~1-2 h

21

https://en.cppreference.com/w/cpp/atomic/atomic
https://www.boost.org/doc/libs/1_86_0/libs/histogram/doc/html/index.html
https://en.cppreference.com/w/cpp/atomic/atomic
https://www.boost.org/doc/libs/1_86_0/libs/histogram/doc/html/index.html

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11)

Custom copy conversion into python boost histograms
● Arbitrary number of axes
● Configurable underflow/overflow bins
● Convenient (numpy like) indexing/ manipulation

Histograms stored with pickle
● Using proxies dictionary in .hdf5 to allow lazy loading (code)
● Including meta data (e.g. number of processed events, cross section/luminosity,

command, …)

Boost
Histograms

RDataFrame
~1-2 h

21

https://en.cppreference.com/w/cpp/atomic/atomic
https://www.boost.org/doc/libs/1_86_0/libs/histogram/doc/html/index.html
https://boost-histogram.readthedocs.io/en/latest/
https://github.com/bendavid/narf/blob/main/narf/ioutils.py
https://en.cppreference.com/w/cpp/atomic/atomic
https://www.boost.org/doc/libs/1_86_0/libs/histogram/doc/html/index.html
https://boost-histogram.readthedocs.io/en/latest/
https://github.com/bendavid/narf/blob/main/narf/ioutils.py

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Boost
Histograms

RDataFrame
~1-2 h

22

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Boost
Histograms

RDataFrame
~1-2 h

22

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions

Boost
Histograms

RDataFrame
~1-2 h

22

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions

Atomic boost histograms and tensor axes implemented in narf submodule
● More details given at ROOT Users Workshop 2022: link
● Not currently integrated in root; similar functionality in RHistogram?

● Interest also from outside W mass analysis team

Boost
Histograms

RDataFrame
~1-2 h

22

https://github.com/bendavid/narf
https://indico.fnal.gov/event/23628/contributions/237985/
https://github.com/bendavid/narf
https://indico.fnal.gov/event/23628/contributions/237985/

Histogram benchmark

Using 400M events of CMS NanoAOD (W→μν) and filling 10 copies of pdf
variation histograms

256 threads (2 EPYC 7702)

● Root histograms slowed down by merging step
● Memory much lower with atomic accumulation
● Factor ~4 time reduction with tensor axes due to reduced lookup
● Some additional subtleties related to cash locality

Boost
Histograms

RDataFrame
~1-2 h

23

HDF5 writer

Histograms with data, prediction, and systematic variations
need to be casted into a tensor for final fit
● Purely python based (boost histograms, numpy, ...)
● Flexibility & efficient implementation is essential
● Perform selections/ accumulations/ other computations on histograms

● Signal selection
● Data-driven nonprompt background estimation

● Smoothing “on-the-fly” using least squares (code)
● Modify systematic variations e.g. decorrelating/ combining

Sparse tensor implementation for unfolding

hdf5 tensor

HDF5 writer

 ~2 min

Boost
Histograms

24

https://github.com/WMass/WRemnants/blob/main/wremnants/regression.py
https://github.com/WMass/WRemnants/blob/main/wremnants/regression.py

Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers

● Gaussian constraint nuisance parameters θ for systematic uncertainties
● Signal strength modifier μ
● Systematic variations in 3D tensor κ

25

Tensorflow fit

RooFit via minuit insufficient
● Limited numerical stability and efficiency

● E.g. can not be parallelized

Tensorflow library with automatic gradient computation via back propagation for
minimization:
● Quasi Newton trust region based minimizer to reliably find global minimum

● Native tensorflow implementation; algorithm based on arXiv:1506.07222
● Fast, numerically accurate, stable
● Parallelized vector processing units and/or multiple threads
● Sparse tensor implementation to minimize memory consumption (if response

matrix is close-to-diagonal, e.g. leptonic observables)
● Implemented in combineTF, see also PyHEP 2020: link

hdf5 tensor

Fitresults

Tensorflow fit

 ~5-10 min

26

https://arxiv.org/abs/1506.07222
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://indico.cern.ch/event/882824/contributions/3932491/
https://arxiv.org/abs/1506.07222
https://github.com/bendavid/HiggsAnalysis-CombinedLimit/tree/tensorflowfit
https://indico.cern.ch/event/882824/contributions/3932491/

Tensorflow 2 fit

Re-written in Tensorflow 2:
● More developer-friendly due to eager execution
● Almost feature complete combineTF2 implementation
● More efficient computatoin of hessian and hessian vector products
● Trust-krylov minimizer from SciPy, computing the gradient and hessian-vector

product in tensorflow 2
● I.e. not using quasi-newton methods as in the combineTF1 case

Benchmark using MIT machine
● CPU: EPYC 9654
● GPU: Nvidia A30

GPU “only” used to calculate the gradient/hessian/hessian-vector-product

hdf5 tensor

Fitresults

Tensorflow fit

 ~5-10 min

fit fit + covariance

CombineTF1 CPU 1m49s 3m48s

CombineTF2 CPU 34s 47s

CombineTF2 GPU 36s 39s

27

https://github.com/bendavid/narf/blob/main/scripts/fitting/combinetf2.py
https://github.com/bendavid/narf/blob/main/scripts/fitting/combinetf2.py

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

28

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

28

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

Solution → GitHub actions: platform for automate developer workflows
● Use continuous integration and deployment (CI/CD) pipeline
● Same tool as used for code development instead of third party integration
● Slim and easily to set up and manage (compared to e.g. Jenkins)

28

Github CI workflow

Different analysis chains implemented
● Independent jobs run in parallel, each job contains a set of steps
● Different arguments for plotting/ fitting for good code coverage
● Investigate failed jobs directly in Github actions

A

A

A

A

29

https://github.com/WMass/WRemnants/actions
https://github.com/WMass/WRemnants/actions

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

1)

2)
3)
4)

30

https://github.com/WMass/WRemnants/blob/main/.github/workflows/main.yml
data:MC
data:MC
https://github.com/WMass/WRemnants/blob/main/.github/workflows/main.yml
data:MC
data:MC

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks
● Run in CI and as pre-commit hooks
● Syntax checks for python, c++, yaml, json files
● Linters: Black, Flake8, isort

Everything blinded

1)

2)
3)
4)

30

https://github.com/WMass/WRemnants/blob/main/.github/workflows/main.yml
data:MC
data:MC
https://black.readthedocs.io/en/stable/getting_started.html
https://flake8.pycqa.org/en/latest/
https://pycqa.github.io/isort/
https://github.com/WMass/WRemnants/blob/main/.github/workflows/main.yml
data:MC
data:MC
https://black.readthedocs.io/en/stable/getting_started.html
https://flake8.pycqa.org/en/latest/
https://pycqa.github.io/isort/

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN

high-performance analysis machine used for this analysis

● Repository with sub modules checked out
including large file storage (lfs) support

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

31

https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://linux.web.cern.ch/docs/kerberos-access/
https://linux.web.cern.ch/docs/kerberos-access/#server-side-configuration-and-troubleshooting
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://linux.web.cern.ch/docs/kerberos-access/
https://linux.web.cern.ch/docs/kerberos-access/#server-side-configuration-and-troubleshooting

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN

high-performance analysis machine used for this analysis

● Repository with sub modules checked out
including large file storage (lfs) support

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

31

https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://linux.web.cern.ch/docs/kerberos-access/
https://linux.web.cern.ch/docs/kerberos-access/#server-side-configuration-and-troubleshooting
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://linux.web.cern.ch/docs/kerberos-access/
https://linux.web.cern.ch/docs/kerberos-access/#server-side-configuration-and-troubleshooting

Webpage support

Results initially created in local temporary folder
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser

[...]

32

https://cms-analysis.docs.cern.ch/guidelines/other/plot_browser/
https://cms-analysis.docs.cern.ch/guidelines/other/plot_browser/

Webpage support

Results initially created in local temporary folder
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser
● Automatic lumi scaling for using subset of data files

[...]

32

https://cms-analysis.docs.cern.ch/guidelines/other/plot_browser/
https://github.com/bendavid/narf/blob/main/narf/lumitools.py
https://cms-analysis.docs.cern.ch/guidelines/other/plot_browser/
https://github.com/bendavid/narf/blob/main/narf/lumitools.py

Webpage support

[...]

Plots for nuisance parameter pulls, constraints,
and impacts produce via plotly
● Available in interactive .html
● See all O(1000) nuisances with more digits

33

https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py

Webpage support

[...]

Plots for nuisance parameter pulls, constraints,
and impacts produce via plotly
● Available in interactive .html
● See all O(1000) nuisances with more digits

Each plot is produced with a .log file

33

https://github.com/plotly/plotly.py
https://github.com/plotly/plotly.py

.log files

[...]

34

.log files

[...]

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

.log files

[...]

Check exact
event yields

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

.log files

[...]

Check exact
event yields

Git commit hash

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

.log files

[...]

Check exact
event yields

Git commit hash

Local untracked
changes

→ Each plot
is reproducible

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

Many interesting features not discussed today

Other analysis ingredients
● Efficiencies

● Using tag and probe fits, smoothing of scale factors in 1D/2D
● Helicity cross section corrections & uncertainties

● Based on Eigen
● Muon calibration

● Object to event weight variations via CDF transform
● Recoil calibration

● Functional fit based on JAX, evaluation with tensorflow lite c++
● ...

35

Summary

Increasing amount of data opens new opportunities
● Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement
● RDF provides a convenient and efficient library

● Initially showstoppers observed in scaling
● Extensive work on critical parts to improve RDF and histogram implementation

● Full analysis runs in ~hours

Challenging collaborative work with increasing number of contributors
● Github CI/CD pipeline has turned out to be extremely useful
● Time savings in PR reviews, spot/avoid bugs, backtrack changes
● Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements

36

Backup

Precision measurements of standard model parameters provide opportunity to
over constrain the theory and pose stringent tests

Indirect prediction (~6MeV) more precise than direct measurement (~10MeV)
and in tension (CDF)

→ Call for more precise measurements
38

Lumitools

Automatic computation of integrated luminosity of processed data
● CMS data is organized by fill, run, luminosity block (~24s)

● Use .csv file containing integrated luminosity information
● Provided by the CMS BRIL group

● Processed with RDataFrame, read non-ROOT data
● Guarantees consistent luminosity calculation
● Convenient for running on subset of data

Implemented in lumitools
● Could be used standalone

39

https://github.com/bendavid/narf/blob/main/narf/lumitools.py
https://github.com/bendavid/narf/blob/main/narf/lumitools.py

Histogram benchmark

● In the tensor/array weight-case the weights for the different systematic idxs are
contiguous in memory by construction

● In the N+1-d histogram case it depends on the array ordering
● TH1/2/3 and boost-histograms have fortran array ordering → systematic idx

axis is best at the front
● THn has C array ordering → systematic idx axis is best at the back
● The difference is about a factor of 2 for both root and boost hists (but still >

50% additional gain from tensor filling)
● Largely accounted simply by skipping the extra FDIVs needed for redundant

value-to-index conversion for the 5 axes
40

QCD multijet background estimation

Estimated from data using extended ABCD method
● Prediction from yields in sideband regions in bins

of high relative isolation and low mT
W

● Prompt background in sideband region subtracted from simulation
● Repeated for each systematic variation ~O(1000) times

● Evaluated in fine bins in pT
μ, ημ, qμ

D=SRB

A CAx

Bx

20 40

0.15

relative
isolation

mT
W [GeV]

41

https://arxiv.org/abs/1906.10831
https://arxiv.org/abs/1906.10831

QCD multijet background estimation

Smoothing each sideband region in pT
μ with exponential “on-the-fly”

● Maintain good statistical properties
● Smoothing in 5 regions, 96 bins for ημ, qμ

● Repeated for O(1000) systematic variations
● Robust and efficient calculation required

● Use polynomial in log space
● Analytic solutions using least squares

● Systematic uncertainties from eigenvector decomposition
● Everything done in ~seconds

More complex procedures tested
● E.g. using integrated Bernstein polynomials with nnls to enforce monotonicity

42

https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Non-negative_least_squares
https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Non-negative_least_squares

How to measure the W mass with 10 MeV
uncertainty

EP-IT Data Science Seminars

16 October 2024, CERN

David Walter (CERN) on behalf of the CMS Collaboration

Analysis presented in LPC seminar last month
● Document: [CMS-PAS-SMP-23-002]

First measurement of mW from CMS
● Most precise at LHC
● In agreement with the SM

but in tension with CDF

This seminar will focus
on the technical aspects

Introduction

2

2

Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come

→ Software developments have to keep up with technical challenges

3

3

Use 16.8 fb-1 pp collision data at √s=13TeV

Large inclusive W cross section
● 300M data and 4B MC events (4 times MC statistical power)

Largest dataset used for W boson mass analysis
● Opportunity to exploit multi dimensional information
● Challenging data processing

Much more data available now and in the years to come

→ Software developments have to keep up with technical challenges

HL-LHC

3

4

Missing transverse energy

Muon

The measurement is performed using the muon kinematics only

q

q’

μ

ν

W

4

5

How we measure the W boson mass

Strategy to use large data sample and constrain theory uncertainties in-situ

Profile likelihood fit to single muon pT η, charge distribution
● 2880 bins

0

2

4

6

8

Ev
en

ts
/G

eV

×105 16.8 fb 1 (13 TeV)

CMSPreliminary Prefit
q = +1

Data
W±

Nonprompt

Z/ /
W±

Rare

0 200 400 600 800 1000 1200 1400
(pT ,) bin

1.0

1.1

D
at

a/
Pr

ed
.

Pred. unc.

0

2

4

6

Ev
en

ts
/G

eV

×105 16.8 fb 1 (13 TeV)

CMSPreliminary Prefit
q = -1

Data
W±

Nonprompt

Z/ /
W±

Rare

0 200 400 600 800 1000 1200 1400
(pT ,) bin

1.0

1.1

D
at

a/
Pr

ed
.

Pred. unc.

5

6

Multiple analyses in one

● Z dilepton mll, pT
Z-yZ, W-like

● Unfolding
● Helicity cross section fit
● Generator studies
● ...

Different configurations, including combined fits

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ev
en

ts
/G

eV

×106 16.8 fb 1 (13 TeV)

CMS
Preliminary

Postfit
2/ndf

= 15/24 (p = 92%)

Data
Z/ /
Other

60 70 80 90 100 110 120
m (GeV)

1.00

1.01

D
at

a/
Pr

ed
.

mZ ± 4.8MeV Pred. unc.

0

2

4

6

8

Z
C

ro
ss

se
ct

io
n

(p
b/

G
eV

) ×101 (13 TeV)

CMS
Preliminary

Unfolded data
(pT , y)
mZ (pT , , q)
prefit

0 10 20 30 40 50
pZ

T (GeV)

0.9

1.0

R
at

io
 to

 p
re

fit

(pT , y)
mZ (pT , , q)

prefit

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
C

ro
ss

se
ct

io
n

(p
b/

G
eV

) ×103 (13 TeV)

CMS
Preliminary

mW (pT , , q) + (pT , y)
mW (pT , , q)
prefit

0 10 20 30 40 50
pW

T (GeV)

0.8

0.9

1.0

R
at

io
 to

 p
re

fit
mW (pT , , q) + (pT , y)
mW (pT , , q)

prefit

6

7

Precise treatment of uncertainties
requires large amount of variations
● O(1000) parameters in single fit

7

8

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Requirements

8

9

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Requirements

8

10

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Reliable & transparent
● low error rate
● reproducible

→ git versioning;
continuous integration

→ documentation

Requirements

8

11

Fast analysis turnaround

→ external libraries;
low level critical parts in c++

→ “smart” parallelism

Fast development
● flexible

● low barrier to entry
● easy to maintain

→ customizable

→ high level
scripts in python

Reliable & transparent
● low error rate
● reproducible

→ git versioning;
continuous integration

→ documentation

Requirements

Our analysis
framework

8

12

Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree

● Independent of experiment specific software
● High level physics objects

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event
● Good for ~50% of analyses

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

9

13

Shorten the gap between data and results: NanoAOD

Central supported compact CMS event data format [0,1]
● Flat ROOT TTree

● Independent of experiment specific software
● High level physics objects

● (pT, η, ɸ, ID, ... of muons, electrons, jets, …)
● ~2kB per event

Easy customization with additional information
● Alternate PDFs, Info for muon track fit, ...

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2A
na

ly
si

s
da

ta
 f

or
m

a
ts

MiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

10

14

NanoGEN and NanoLHE

NanoAOD with only then GEN-related branches
● Developed to validate MiNNLO event generator

● Now centrally supported in CMS
● Producible directly from gridpack
● Lightweight, no detector simulation
● ~0.4kB per event

Large quantities produced
● O(100M) for MiNNLO validation
● O(10B) for EW uncertainties

Data tier Size (kB)

RAW 1000

Gen <50

SIM 1000

DIGI 3000

RECO(SIM) 3000

AOD(SIM) 400

MiniAOD(SIM) 50

NanoAOD(SIM) 2

NanoGEN 0.4

A
na

ly
si

s
da

ta
 f

or
m

a
ts

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

11

15

Boost
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots
& diagnostics

Top level analysis
framework
WRemnants
● Covered by CI

Corrections &
systematics

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

12

16

Boost
Histograms

hdf5 tensor

Fitresults

RDataFrame

HDF5 writer Tensorflow fit

~1-2 h

~2 min

~5-10 min

Values & uncertainties
Pulls & Constraints
Prefit/postfit plots

Control plots
& diagnostics

Top level analysis
framework
WRemnants
● Covered by CI

Corrections &
systematics

Nano
GEN

 ~daysMiniAOD

Nano
AOD

CMSSW
~days

Simulation
 ~weeks/

 months

Primary
data

CMSSW

Central
production
run on Grid

Private
production
run on Grid

Ran 6-7 times in 5 years

Ran on daily basis (>1000 times)
12

17

13

18

Where we started
13

19

High performance computing machines

Custom analysis framework executed locally
● No resubmission of failed jobs/ merging of jobs etc.
● Direct feedback on progress

Run on single high performance machine
● Reading/writing on fast NVMe SSDs

● Local or via network interface 100Gbit/s
● Reading from local CERN eos via xrootd

● Network interface 100Gbit/s

Possible upgrade for the future

● EPYC Turin machine with 384 cores/ 768 threads

CERN MIT/Pisa

CPU 2 x EPYC
7702

2 x EPYC
9654

cores 128 192

threads 256 384

memory 1TB 1.5/2TB

14

20

ROOT RDataFrame

Select objects, filter events, fill histograms
● Pythonic, declarative, graph-style analysis

● Lazy execution: perform all operations
in parallelized single event loop

● Executed on local machine
● Plan to explore distRDF for multi-node scaling

● See RDF reference, documentation, EP seminar

Many optimizations conducted to ensure good thread scaling
● Now fully integrated in ROOT

Boost
Histograms

RDataFrame
~1-2 h

15

21

ROOT RDataFrame

Critical parts in c++
● Functions: e.g. check if reco muon has a match to any gen muon

● Compiled at runtime using cling jitting
● And in python

● Other examples much more complex – but follow same logic
● We also tried Numba, but found less efficient and not more convenient

Boost
Histograms

RDataFrame
~1-2 h

16

22

ROOT RDataFrame

Critical parts in c++
● Helpers – classes that contain histograms with corrections and functions to apply

them: e.g. reweight pileup spectrum in MC to the one in data

● And in python

● Other examples much more complex – but follow same logic

Boost
Histograms

RDataFrame
~1-2 h

17

23

ROOT RDataFrame

Critical parts in c++
● Often templated (e.g. for histogram bins)
● Also using Eigen and tensorflow c++ libraries

● And in python

Boost
Histograms

RDataFrame
~1-2 h

18

[...]

24

Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility
● E.g. data-driven nonprompt background prediction
● Nominal histogram is 5D

Boost
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

All 17,280

19

25

Histograms

Strategy to perform computations on histograms later in analysis chain
● Allows for more flexibility
● E.g. data-driven nonprompt background prediction
● Nominal histogram is 5D
● Largest histograms with 8D and 20M bins

● For efficiency scale factor 2D smoothed in pT and uT

● ~same histograms for 16 processes

Significant memory consumption

→ For largest histogram: 2.5GB

→ For all: 13GB

Gets much worse if flow bins can’t be disabled (as in root histograms)

Boost
Histograms

RDataFrame
~1-2 h

Axis Bins

pT
μ 30

ημ 48

qμ 2

Irel
μ 2

mT
W 3

var. ημ 48

var. qμ 2

eig. vec. 12

All 19,906,560

All (w/ flow) 358,400,000

20

26

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Boost
Histograms

RDataFrame
~1-2 h

21

27

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11)

Boost
Histograms

RDataFrame
~1-2 h

21

28

Boost histograms

Previously: one root histogram copy for each thread
● But large memory consumption was a showstopper
● Long merging time when adding up at the end

Solution: use std:atomic<double> with c++ boost histograms
● All threads write in same histogram
● But can’t use python binding directly … (cppyy vs. pybind 11)

Custom copy conversion into python boost histograms
● Arbitrary number of axes
● Configurable underflow/overflow bins
● Convenient (numpy like) indexing/ manipulation

Histograms stored with pickle
● Using proxies dictionary in .hdf5 to allow lazy loading (code)
● Including meta data (e.g. number of processed events, cross section/luminosity,

command, …)

Boost
Histograms

RDataFrame
~1-2 h

21

29

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Boost
Histograms

RDataFrame
~1-2 h

22

30

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Boost
Histograms

RDataFrame
~1-2 h

22

31

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions

Boost
Histograms

RDataFrame
~1-2 h

22

32

Tensor axes

All systematic uncertainties represented by event weight variations

Traditionally one histogram per variation
● e.g. NNPDF provides 101 alternate PDF weights → 101 histograms

Better: a single histogram with an additional axis

Even better: fill full array/tensor at once, only do bin lookup once
● Using Eigen tensors
● Arbitrary number of dimensions

Atomic boost histograms and tensor axes implemented in narf submodule
● More details given at ROOT Users Workshop 2022: link
● Not currently integrated in root; similar functionality in RHistogram?

● Interest also from outside W mass analysis team

Boost
Histograms

RDataFrame
~1-2 h

22

33

Histogram benchmark

Using 400M events of CMS NanoAOD (W→μν) and filling 10 copies of pdf
variation histograms

256 threads (2 EPYC 7702)

● Root histograms slowed down by merging step
● Memory much lower with atomic accumulation
● Factor ~4 time reduction with tensor axes due to reduced lookup
● Some additional subtleties related to cash locality

Boost
Histograms

RDataFrame
~1-2 h

23

34

HDF5 writer

Histograms with data, prediction, and systematic variations
need to be casted into a tensor for final fit
● Purely python based (boost histograms, numpy, ...)
● Flexibility & efficient implementation is essential
● Perform selections/ accumulations/ other computations on histograms

● Signal selection
● Data-driven nonprompt background estimation

● Smoothing “on-the-fly” using least squares (code)
● Modify systematic variations e.g. decorrelating/ combining

Sparse tensor implementation for unfolding

hdf5 tensor

HDF5 writer

 ~2 min

Boost
Histograms

24

35

Binned profile maximum likelihood fit

Log likelihood from Poisson distributed bin-by-bin event numbers

● Gaussian constraint nuisance parameters θ for systematic uncertainties
● Signal strength modifier μ
● Systematic variations in 3D tensor κ

25

36

Tensorflow fit

RooFit via minuit insufficient
● Limited numerical stability and efficiency

● E.g. can not be parallelized

Tensorflow library with automatic gradient computation via back propagation for
minimization:
● Quasi Newton trust region based minimizer to reliably find global minimum

● Native tensorflow implementation; algorithm based on arXiv:1506.07222
● Fast, numerically accurate, stable
● Parallelized vector processing units and/or multiple threads
● Sparse tensor implementation to minimize memory consumption (if response

matrix is close-to-diagonal, e.g. leptonic observables)
● Implemented in combineTF, see also PyHEP 2020: link

hdf5 tensor

Fitresults

Tensorflow fit

 ~5-10 min

26

37

Tensorflow 2 fit

Re-written in Tensorflow 2:
● More developer-friendly due to eager execution
● Almost feature complete combineTF2 implementation
● More efficient computatoin of hessian and hessian vector products
● Trust-krylov minimizer from SciPy, computing the gradient and hessian-vector

product in tensorflow 2
● I.e. not using quasi-newton methods as in the combineTF1 case

Benchmark using MIT machine
● CPU: EPYC 9654
● GPU: Nvidia A30

GPU “only” used to calculate the gradient/hessian/hessian-vector-product

hdf5 tensor

Fitresults

Tensorflow fit

 ~5-10 min

fit fit + covariance

CombineTF1 CPU 1m49s 3m48s

CombineTF2 CPU 34s 47s

CombineTF2 GPU 36s 39s

27

38

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

28

39

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

28

40

Continuous integration

Common framework among all analyzers
● Sharing as much code as possible among different efforts
● Reuse existing code, find/avoid bugs, save time
● Quickly developed with O(10) contributors, now at >500 pull requests (PRs)

However
● Updates often unintentionally affected other parts

● Framework was constantly broken
● Sometimes not clear where certain changes came from

Solution → GitHub actions: platform for automate developer workflows
● Use continuous integration and deployment (CI/CD) pipeline
● Same tool as used for code development instead of third party integration
● Slim and easily to set up and manage (compared to e.g. Jenkins)

28

41

Github CI workflow

Different analysis chains implemented
● Independent jobs run in parallel, each job contains a set of steps
● Different arguments for plotting/ fitting for good code coverage
● Investigate failed jobs directly in Github actions

A

A

A

A

29

42

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

1)

2)
3)
4)

30

43

Github CI workflow

Running full analysis chain (code)

1) For each PR on reduced set of files (~1%)

2) Scheduled each morning on reduced set of files (~1%) as reference for PR

3) Scheduled 3 times a week on (1:1) data:MC files to backtrack changes
● All output files (e.g. histograms) stored on EOS for later use
● Separate workflow to delete old files

4) Workflow dispatch on (1:1) data:MC files to manually run on chosen branch
● To test a new feature (e.g. apply new nominal calibration/correction)

In the process of adding code checks
● Run in CI and as pre-commit hooks
● Syntax checks for python, c++, yaml, json files
● Linters: Black, Flake8, isort

Everything blinded

1)

2)
3)
4)

30

44

David

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN

high-performance analysis machine used for this analysis

● Repository with sub modules checked out
including large file storage (lfs) support

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

31

45

David

Maintained via service account with CMS access and eos area
● Self hosted runners to easy access resources and execute code on the CERN

high-performance analysis machine used for this analysis

● Repository with sub modules checked out
including large file storage (lfs) support

Network authentication via Kerberos, key stored in local keytab file

Github CI infrastructure

31

46

Webpage support

Results initially created in local temporary folder
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser

[...]

32

47

Webpage support

Results initially created in local temporary folder
● Copied via xrdcp to CMS protected webpage
● CMS centrally maintained plot browser
● Automatic lumi scaling for using subset of data files

[...]

32

48

Webpage support

[...]

Plots for nuisance parameter pulls, constraints,
and impacts produce via plotly
● Available in interactive .html
● See all O(1000) nuisances with more digits

33

49

Webpage support

[...]

Plots for nuisance parameter pulls, constraints,
and impacts produce via plotly
● Available in interactive .html
● See all O(1000) nuisances with more digits

Each plot is produced with a .log file

33

50

.log files

[...]

34

51

.log files

[...]

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

52

.log files

[...]

Check exact
event yields

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

53

.log files

[...]

Check exact
event yields

Git commit hash

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

54

.log files

[...]

Check exact
event yields

Git commit hash

Local untracked
changes

→ Each plot
is reproducible

Command chain
used to produce
the plot

 → Look up how
to run specific scripts

34

55

Many interesting features not discussed today

Other analysis ingredients
● Efficiencies

● Using tag and probe fits, smoothing of scale factors in 1D/2D
● Helicity cross section corrections & uncertainties

● Based on Eigen
● Muon calibration

● Object to event weight variations via CDF transform
● Recoil calibration

● Functional fit based on JAX, evaluation with tensorflow lite c++
● ...

35

56

Summary

Increasing amount of data opens new opportunities
● Software developments must be ahead to fully exploit potential

Fast analysis turnaround was essential for this complex measurement
● RDF provides a convenient and efficient library

● Initially showstoppers observed in scaling
● Extensive work on critical parts to improve RDF and histogram implementation

● Full analysis runs in ~hours

Challenging collaborative work with increasing number of contributors
● Github CI/CD pipeline has turned out to be extremely useful
● Time savings in PR reviews, spot/avoid bugs, backtrack changes
● Always ensure working implementation for different analyses/ configurations

Many areas identified for further improvements

36

57

Backup

58

Precision measurements of standard model parameters provide opportunity to
over constrain the theory and pose stringent tests

Indirect prediction (~6MeV) more precise than direct measurement (~10MeV)
and in tension (CDF)

→ Call for more precise measurements
38

59

Lumitools

Automatic computation of integrated luminosity of processed data
● CMS data is organized by fill, run, luminosity block (~24s)

● Use .csv file containing integrated luminosity information
● Provided by the CMS BRIL group

● Processed with RDataFrame, read non-ROOT data
● Guarantees consistent luminosity calculation
● Convenient for running on subset of data

Implemented in lumitools
● Could be used standalone

39

60

Histogram benchmark

● In the tensor/array weight-case the weights for the different systematic idxs are
contiguous in memory by construction

● In the N+1-d histogram case it depends on the array ordering
● TH1/2/3 and boost-histograms have fortran array ordering → systematic idx

axis is best at the front
● THn has C array ordering → systematic idx axis is best at the back
● The difference is about a factor of 2 for both root and boost hists (but still >

50% additional gain from tensor filling)
● Largely accounted simply by skipping the extra FDIVs needed for redundant

value-to-index conversion for the 5 axes
40

61

QCD multijet background estimation

Estimated from data using extended ABCD method
● Prediction from yields in sideband regions in bins

of high relative isolation and low mT
W

● Prompt background in sideband region subtracted from simulation
● Repeated for each systematic variation ~O(1000) times

● Evaluated in fine bins in pT
μ, ημ, qμ

D=SRB

A CAx

Bx

20 40

0.15

relative
isolation

mT
W [GeV]

41

62

QCD multijet background estimation

Smoothing each sideband region in pT
μ with exponential “on-the-fly”

● Maintain good statistical properties
● Smoothing in 5 regions, 96 bins for ημ, qμ

● Repeated for O(1000) systematic variations
● Robust and efficient calculation required

● Use polynomial in log space
● Analytic solutions using least squares

● Systematic uncertainties from eigenvector decomposition
● Everything done in ~seconds

More complex procedures tested
● E.g. using integrated Bernstein polynomials with nnls to enforce monotonicity

42

63

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 22 (4)
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 28 (3)
	Slide: 29
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 33 (1)
	Slide: 33 (2)
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 34 (4)
	Slide: 34 (5)
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39
	Slide: 40
	Slide: 41
	Slide: 42
	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 14
	Slide: 15
	Slide: 16
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 22 (4)
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 28 (3)
	Slide: 29
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 33 (1)
	Slide: 33 (2)
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 34 (4)
	Slide: 34 (5)
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39
	Slide: 40
	Slide: 41
	Slide: 42

