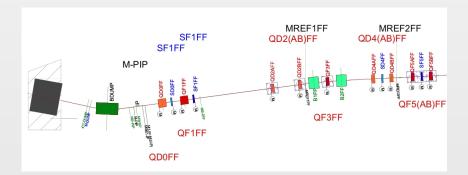
Effect of replacing the ATF2 QF1 by a perfect one

Hector Garcia Morales^{1,2}

Eduardo Marin 1,2 , Rogelio Tomas 2

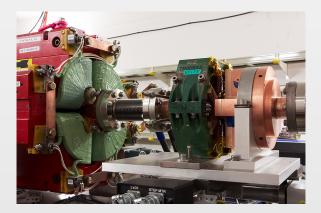
 1 Universitat Politècnica de Catalunya, Barcelona 2 CERN, Geneve

July 6, 2011



- The recent earthquake has delayed the plans concerning ATF2 experiments.
- Before end 2013 is planned to get 37nm vertical spot size.
- After 2013 Ultra-low beta proposal will be implemented.

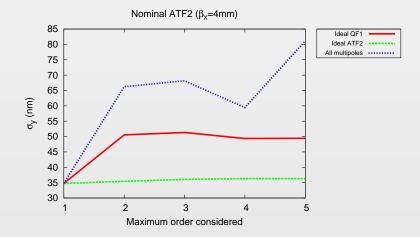
Table: ATF2 parameters (E = 1.3 GeV)


Project	Status	$\beta_y^* (\mathrm{mm})$	L^* (m)	ξ_y
ATF2 Nominal	Design	0.1	1.0	19000
ATF2 Ultra Low	Proposed	0.025	1.0	76000

ATF2 Final Focus System

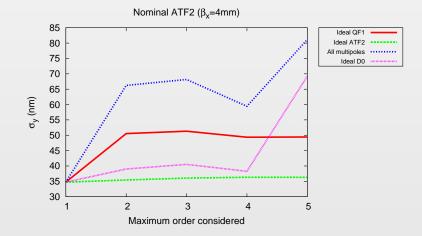
Figure: ATF2 Final Magnets of the FF

ATF2 QF1

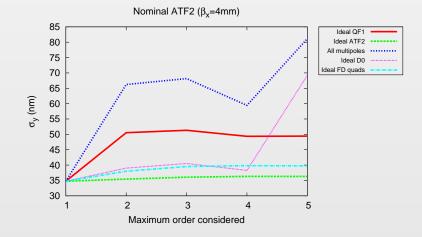

Figure: ATF2 QF1 and SF1FF magnets

- The installation and operation is planned for the beginning of 2013.
- The main parameters of the magnet must be fixed in next months.
- A second magnet could be proposed for QD0.

- We assume an ideal QF1 magnet, i.e. null terms different from quadrupolar in the multipolar expansion.
- With this assumption we can determine the conceptual beam size limit we can get assuming a perfect CERN magnet design.
- All the measured beam sizes are rms beam sizes. Shintake monitors can give a lower measurement.


Nominal design $\beta_x^* = 4$ mm, $\beta_y^* = 0.1$ mm

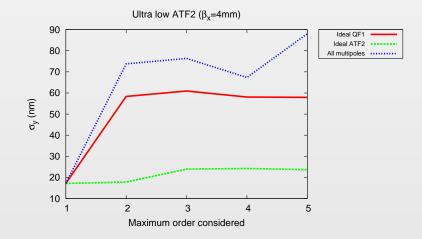
Nominal proposal


• The effect of the QF1 multipoles is important but maybe not enough. $\sigma_y \sim 50 nm$

Nominal proposal

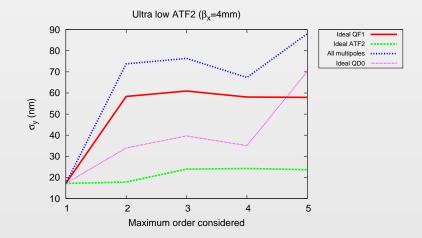
• Replacing QD0 only, the high order contributions from QF1 dominate but "it works for lower orders".

Nominal proposal

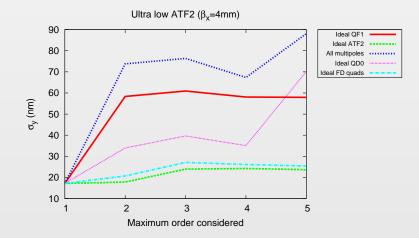


• Replacing both, we can reach a beam size ~ 40 nm.

Ultra low betas $\beta_x^* = 4$ mm, $\beta_y^* = 25 \mu$ m


• Designed to achieve the 20nm vertical IP beam size without considering the multipolar components of the Final Doublet magnets

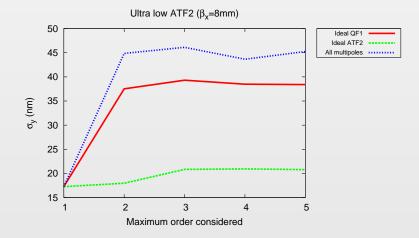
Ultra low beta proposal $\beta_x^* = 4$ mm


• The contribution of QF1 is not so important but it avoids high order effects.

Ultra low beta proposal $\beta_x^* = 4$ mm

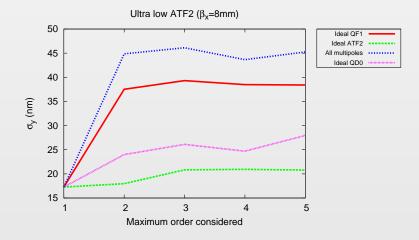
• Replacing QD0 we still have the high order contributions from QF1, but "is not a bad solution for lower orders".

Ultra low beta proposal $\beta_x^* = 4$ mm

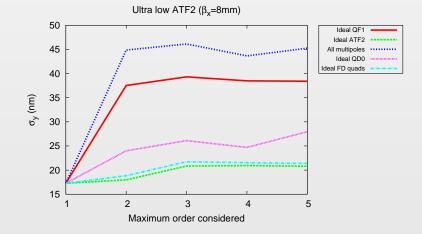


• Replacing both we can reach a 27nm vertical beam size, a good number for UL proposal.

Ultra low betas $\beta_x^* = 8 \text{mm}, \beta_y^* = 25 \mu \text{m}$


(ATF2 is now operating at $\beta_x^* = 8$ mm)

Ultra low beta proposal $\beta_x^* = 8$ mm


• The effect of the ideal QF1 is not so important. Replace only QF1 is not a good option.

Ultra low beta proposal $\beta_x^* = 8$ mm

• Replace QD0 instead of QF1 is a better solution. $\sigma_y \sim 28$ nm.

Ultra low beta proposal $\beta_x^* = 8$ mm

• But the best option seems to be replace both. $\sigma_u \sim 22$ nm.

Conclusions/Options

Design	Replacement	Beam size
Nominal $(\beta_x^* = 4 \text{mm})$	QF1 QD0	$40 \mathrm{nm}$
Nominal $(\beta_x^* = 4 \text{mm})$	m QF1	49nm
Nominal $(\beta_x^* = 4\text{mm})$	QD0	69nm
Ultra low $(\beta_x^* = 4\text{mm})$	QF1 QD0	$27 \mathrm{nm}$
Ultra low $(\beta_x^* = 4\text{mm})$	m QF1	58nm
Ultra low $(\beta_x^* = 4 \text{mm})$	QD0	70nm
Ultra low $(\beta_x^* = 8 \text{mm})$	QF1 QD0	22nm
Ultra low $(\beta_x^* = 8 \text{mm})$	m QF1	38nm
Ultra low $(\beta_x^* = 8 \text{mm})$	QD0	$28 \mathrm{nm}$

- For the nominal proposals, it is necessary replace both magnets.
- For the UL $(\beta_x^* = 8 \text{mm})$ replace only QD0 is not a bad option.