Production of $\phi(1020)$ mesons in nucleus-nucleus collisions at the CERN SPS

Łukasz Rozpłochowski for the NA61/SHINE Collaboration

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

XVII Polish Workshop on Relativistic Heavy-Ion Collisions 14-15 Dec. 2024, Warsaw University of Technology

Introduction

- 1. ϕ meson
 - resonant particle (width = 4.266 MeV/ c^2 , $\tau \approx 50$ fm/c)
 - main decay channel $\phi \rightarrow K^+ K^-$ (BR $\approx 50\%$)
 - the lightest particle (m = 1020 MeV/ c^2) with hidden strangeness ($s\overline{s}$)
- 2. Data from NA61/SHINE Ar+Sc collisions at three beam momenta
 - 150A GeV/c ($\sqrt{s_{NN}} = 16.8$ GeV)
 - 75A GeV/c ($\sqrt{s_{NN}} = 11.9$ GeV)
 - 40A GeV/c ($\sqrt{s_{NN}} = 8.8$ GeV)
- 3. Motivation
 - comparison with Pb+Pb and p+p data
 - constrain models (ϕ meson is interesting due to hidden strangeness)

NA61/SHINE detector

- fixed-target, multipurpose experiment (topics: ions, neutrinos, cosmic rays)
- direct measurement only for charged hadrons
- TPCs \rightarrow particle tracks in 3D
- energy loss (dE/dx) \rightarrow particle identification (PID)

- detector at the time when Ar+Sc data was taken (2015)
- major hardware update was performed since then (see NA61/SHINE, Springer Proc.Phys. 250 (2020) 473-477)

Analysis methodology

Event selection:

- 10% of the most central collisions
- well measured main vertex
- in the target

TPC track selection

- from main vertex
- well reconstructed
- enough points in TPCs (accurate dE/dx and momentum)
- PID cuts
 - $\pm 5\%$ band around Bethe-Bloch K curve
 - ±13% band around Bethe-Bloch K curve (better signal to bkg ratio in tag sample)

Signal extraction

- invariant mass spectra in y, p_T bins
- tag and probe method ATLAS, Eur. Phys. J. C 74, 2895 (2014) LHCb, Phys. Lett. B 703, 267 (2011) SHINE, Eur. Phys. J. C 80, 199 (2020)

Tag and probe method (ATLAS, LHCb)

- This method allows to extract ϕ yield without knowledge of efficiency of kaon selection (ϵ)
- Spectra are fitted simultaneously to get N_{ϕ}

$$\begin{cases} N_t = N_{\phi} \varepsilon (2 - \varepsilon) \\ N_p = N_{\phi} \varepsilon^2 \end{cases}$$

 $N_{t/p} \rightarrow$ expected signal yields $N_{\phi} \rightarrow \phi$ contributing to the spectra

background event mixing + K*(892) template signal convolution of relativistic Breit-Wigner and q-Gaussian

dn²/dydp_T distributions, central Ar+Sc at $\sqrt{s_{NN}}$ = 16.8 GeV

Ł. Rozpłochowski (IFJ PAN) for NA61/SHINE

$dn^2/dydp_T$ distributions, central Ar+Sc at $\sqrt{s_{NN}} = 11.9$ GeV

Ł. Rozpłochowski (IFJ PAN) for NA61/SHINE

dn²/dydp_T distributions, central Ar+Sc at $\sqrt{s_{NN}}$ = 8.8 GeV

fit with function

 $f(p_T) \propto p_T \cdot \exp\left(-\frac{m_T}{T}\right)$

to obtain integral of the tail of the p_T distribution (needed for dn/dy)

tails from 1.6% to 2.5%

Ł. Rozpłochowski (IFJ PAN) for NA61/SHINE

dn/dy distributions

tails from	$\sqrt{s_{NN}}$ (GeV)	1000 $\langle \phi angle$	RMS (double Gaussian fit)
0.8% to 2.5%	16.8	$1148\pm17\pm21$	$0.994 \pm 0.020 \pm 0.018$
	11.9	$707\pm11\pm14$	$0.866 \pm 0.013 \pm 0.010$
	8.8	$438\pm12\pm22$	$0.703 \pm 0.016 \pm 0.021$

dn/dy distributions

- Model calculations made by summer students Sena Veli (Technical University of Munich) and Tomasz Janiec (The University of Manchester)
- None of the models matches the experimental data points

Width of rapidity distributions

- Width of the rapidity distributions (σ_y) as a function of the beam rapidity (c.m.s.) for various particles from Pb+Pb and p+p collisions
- Lines are fitted to guide the eye

Width of rapidity distributions

- Width of the rapidity distributions (σ_y) as a function of the beam rapidity (c.m.s.) for various particles from Pb+Pb and p+p collisions
- Lines are fitted to guide the eye
- Width of the rapidity distributions of φ meson from:
 - Pb+Pb (NA49)
 - p+p (NA61), p+p (NA49)

Width of rapidity distributions

- Width of the rapidity distributions (σ_y) as a function of the beam rapidity (c.m.s.) for various particles from Pb+Pb and p+p collisions
- Lines are fitted to guide the eye
- Width of the rapidity distributions of φ meson from:
 - Pb+Pb (NA49)
 - p+p (NA61), p+p (NA49)
 - Ar+Sc (NA61/SHINE preliminary)

$\phi(1020)$ enhancement

- ϕ/π ratio for Ar+Sc is slightly lower than for Pb+Pb, but much higher than for p+p collisions
- ϕ enhancement over p+p collisions is slightly higher than for kaons in both Ar+Sc and Pb+Pb, and independent of the collision energy in the considered range

Summary

- 1. We analyzed ϕ meson production using central Ar+Sc data at $\sqrt{s_{NN}} = 16.8$, 11.9 and 8.8 GeV from the NA61/SHINE experiment
- 2. We obtained double differential (y, p_T) spectra of ϕ mesons from invariant mass $(\phi \rightarrow K^+ K^-)$ analysis (tag and probe procedure)
- 3. The widths of rapidity distributions from central Ar+Sc are similar to those from p+p reactions
- 4. Enhanced production of ϕ meson in central Ar+Sc comparable to p+p, but slightly lower than in Pb+Pb, independent of the collision energy (from $\sqrt{s_{NN}} = 8.8$ to 16.8 GeV)

Thank you

This work was supported by the National Science Centre, Poland (grant number 2023/51/D/ST2/02950)

The autor (Ł.R.) acknowledges financial support provided by the Polish National Agency for Academic Exchange NAWA under the Programme STER - Internationalisation of doctoral schools, Project no. BPI/STE/2023/1/00027/U/00001

Extra slides

Tag and probe method

- Tag and probe method allows to extract ϕ yield without knowledge of efficiency of kaon selection
- Tag sample \rightarrow at least one track in the pair passes PID condition
- Probe sample \rightarrow both tracks in the pair pass PID condition
- Expected signal yields $(N_{t/p})$ depend on efficiency of K selection (ϵ) and number of ϕ contributing to the spectra (N_{ϕ})

$$\begin{cases} N_t = N_{\phi} \epsilon (2 - \epsilon) \\ N_{\rho} = N_{\phi} \epsilon^2 \end{cases}$$
(1)

Spectra are fitted simultaneously to get N_{ϕ}

Tag and probe method

Single spectrum is fitted with a sum of

background event mixing + K* template

kaon candidate taken from the current event is combined with candidates from previous 100 events to create ϕ candidates in the mixed events spectrum

signal convolution of relativistic Breit-Wigner and q-Gaussian (detector resolution)

fitting function:

$$f_t(m_{in\nu}) = N_t(N_{\phi}, \epsilon) \cdot V(m_{in\nu}; m_{\phi}, \sigma) + N_{bkg,t} \cdot B_t(m_{in\nu}; f_{K^*,t}),$$

$$f_p(m_{in\nu}) = N_p(N_{\phi}, \epsilon) \cdot V(m_{in\nu}; m_{\phi}, \sigma) + N_{bkg,p} \cdot B_p(m_{in\nu}; f_{K^*,p}),$$

$$(2)$$

where

$$V = f_{relBW} * f_{q-Gaus}$$

dn/dy distributions, Ar+Sc @ 150A, 75A and 40A GeV/c

- solid line \rightarrow gaussian
- dotted line \rightarrow double gaussian
 - describes data points better
 - will be used for evaluation of y width

Additions compared to p+p – PID cut shift

Additions compared to p+p – outer PID cut

- apply outer BB band ±13% to reduce the background
- this affects only the tag sample

Tag and Probe Ar+Sc 150A GeV/c

Transverse mass distributions

