Entropy production and dissipation in spin hydrodynamics

Asaad Daher (IFJ PAN-Kraków)

Collaborators :

Part I: F. Florkowski, R. Ryblewski, A. Das, R. Biswas, F. Taghinavaz

Part II : F. Becattini, X.L. Sheng, D.Wagner (INFN-Florence)

- 1. What is spin hydrodynamics?
- 2. Covariant thermodynamics approach: results and outlook
- 3. Relativistic quantum-statistical approach: Results and future directions
- 4. Conclusion and outlooks

What is spin hydrodynamics?

• Spin hydrodynamics, emerging as an effective limit of quantum field theory, is applicable to a wide range of systems, including the evolution of the quark-gluon plasma produced in heavy-ion collision experiments.

Illustration of the evolution of a heavy ion collision [1912.07822]

• While spin hydrodynamics holds theoretical promise, no experimental evidence has yet emerged to demonstrate its relevance for QGP description.

Evolution of:

• $T^{\mu\nu} \equiv$ Energy-momentum current,

$$\mathbf{P}^{\,\nu}=\int \mathbf{d}\, \Sigma_{\mu}\, \mathbf{T}^{\,\mu
u}\;,\;\;\partial_{\mu}\mathbf{T}^{\,\mu
u}=\mathbf{0}\;,\;\;\mathbf{T}^{\mu
u}=\mathbf{T}^{\mu
u}_{\mathbf{0}}+\boldsymbol{\delta}\mathbf{T}^{\mu
u}.$$

• $j^{\mu} \equiv Particle$ number current,

$$\mathbf{J}=\int \mathbf{d}\, \Sigma_\mu\, \mathbf{j}^\mu \;,\;\; \partial_\mu\, \mathbf{j}^\mu=0\;,\;\; \mathbf{j}^\mu=\mathbf{j}_0^\mu+\delta\mathbf{j}^\mu.$$

• $\mathbf{S}^{\lambda\mu
u}\equiv\mathbf{Spin}\ \mathbf{current}$,

$$\mathbf{J}^{\lambda\mu
u} = \mathbf{L}^{\lambda\mu
u} + \mathbf{S}^{\lambda\mu
u} , \ \partial_{\lambda}\mathbf{J}^{\lambda\mu
u} = \mathbf{0},$$

$$\mathbf{S}^{\mu
u} = \int \mathbf{d}\Sigma_{\lambda}\mathbf{S}^{\lambda\mu
u} \ , \ \ \partial_{\lambda}\mathbf{S}^{\lambda\mu
u} = \mathbf{T}^{\,
u\mu} - \mathbf{T}^{\mu
u}.$$

The primary objective in the formulation of spin hydrodynamics is to

 Identify and characterize novel transport coefficients that arise in addition to those present in standard relativistic hydrodynamics.

- W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, "Relativistic fluid dynamics with spin," *Phys. Rev. C* 97 no. 4, (2018) 041901, arXiv:1705.00587 [nucl-th].
- [2] K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, "Fate of spin polarization in a relativistic fluid: An entropy-current analysis," *Phys. Lett. B* 795 (2019) 100-106, arXiv:1901.06615 [hep-th].
- [3] K. Fukushima and S. Pu, "Spin hydrodynamics and symmetric energy-momentum tensors A current induced by the spin vorticity -," *Phys. Lett. B* 817 (2021) 136346, arXiv:2010.01608 [hep-th].
- [4] M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov, and H.-U. Yee, "Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation," JHEP 11 (2021) 150, arXiv:2107.14231 [hep-th].
- [5] D. She, A. Huang, D. Hou, and J. Liao, "Relativistic viscous hydrodynamics with angular momentum," Sci. Bull. 67 (2022) 2265-2268, arXiv:2105.04060 [nucl-th].
- [6] A. D. Gallegos, U. Gürsoy, and A. Yarom, "Hydrodynamics of spin currents," SciPost Phys. 11 (2021) 041, arXiv:2101.04759 [hep-th].
- [7] N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, "Relativistic second-order dissipative spin hydrodynamics from the method of moments," *Phys. Rev. D* 106 no. 9, (2022) 096014, arXiv:2203.04766 [nucl-th].
- [8] R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Relativistic second-order spin hydrodynamics: An entropy-current analysis," *Phys. Rev. D* 108 no. 1, (2023) 014024, arXiv:2304.01009 [nucl-th].

Covariant thermodynamics approach: results and outlook

References

- A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Equivalence of canonical and phenomenological formulations of spin hydrodynamics," arXiv:2202.12609 [nucl-th].
- [2] A. Daher, A. Das, and R. Ryblewski, "Stability studies of first-order spin-hydrodynamic frameworks," Phys. Rev. D 107 no. 5, (2023) 054043, arXiv:2209.10460 [nucl-th].
- [3] R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Boost invariant spin hydrodynamics within the first order in derivative expansion," *Phys. Rev. D* 107 no. 9, (2023) 094022, arXiv:2211.02934 [nucl-th].
- [4] R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Relativistic second-order spin hydrodynamics: An entropy-current analysis," *Phys. Rev. D* 108 no. 1, (2023) 014024, arXiv:2304.01009 [nucl-th].
- [5] A. Daher, W. Florkowski, and R. Ryblewski, "Stability constraint for spin equation of state," Phys. Rev. D 110 no. 3, (2024) 034029, arXiv:2401.07608 [hep-ph].
- [6] A. Daher, W. Florkowski, R. Ryblewski, and F. Taghinavaz, "Stability and causality of rest frame modes in second-order spin hydrodynamics," *Phys. Rev. D* 109 no. 11, (2024) 114001, arXiv:2403.04711 [hep-ph].

• Euler equation with spin (for simplicity we set $\mu = 0$) :

$$arepsilon + \mathbf{P} = \mathbf{Ts} + oldsymbol{\omega}_{\mu
u} \mathbf{S}^{\mu
u}$$

• Hydrodynamic currents :

$$\mathsf{T}^{\mu
u} = (arepsilon + \mathsf{P})\mathsf{u}^{\mu}\mathsf{u}^{
u} - \mathsf{p}\mathsf{g}^{\mu
u} + \mathsf{T}^{\mu
u}_S + \mathsf{T}^{\mu
u}_\mathcal{A} \;,\;\; \mathsf{S}^{\lambda\mu
u} = \mathsf{u}^{
u}S^{\mu
u} + \mathsf{S}^{\lambda\mu
u}_1$$

[Xu-Huang et al. Phys.Lett.B 795(2019)100-106]

10 dynamical variables $\varepsilon, u^{\,\mu}, {\sf S}^{\mu\nu}$ with 10 evolution equations ,

Relativistic Navier-Stokes evolution equations with spin current

$$D\varepsilon + (\varepsilon + p)\theta = 2h^{\mu}Du_{\mu} - \nabla \cdot (\mathbf{q} + h) + \pi^{\mu\nu}\partial_{\mu}u_{\nu} + \Pi\Delta^{\mu\nu}\partial_{\mu}u_{\nu} + \phi^{\mu\nu}\partial_{\mu}u_{\nu}$$

$$(\varepsilon + p)Du^{\alpha} - \nabla^{\alpha}p = -(\mathbf{q} + h) \cdot \nabla u^{\alpha} + (\mathbf{q}^{\alpha} - h^{\alpha})\theta + \Delta^{\alpha}_{\nu}D\mathbf{q}^{\nu} - \Delta^{\alpha}_{\nu}Dh^{\nu} - \Delta^{\alpha}_{\nu}\partial_{\mu}(\pi^{\mu\nu} + \Pi\Delta^{\mu\nu}) - \Delta^{\alpha}_{\nu}\partial_{\mu}\phi^{\mu\nu}$$

 $\partial_\lambda(u^\lambda S^{\mu
u}) + \partial_\lambda S^{\lambda\mu
u}_{(1)} = -2(q^\mu u^
u - q^
u u^\mu + \phi^{\mu
u})$

Dissipative currents and transport coefficients

Using entropy current analysis $\partial_\mu s^\mu \geq 0$,

$$\begin{split} \Pi &= \zeta \theta, \\ h^{\mu} &= -\kappa \left(D u^{\mu} - \beta \nabla^{\mu} T \right), \\ q^{\mu} &= \lambda \left(D u^{\mu} + \beta \nabla^{\mu} T - 4 \omega^{\mu\nu} u_{\nu} \right), \\ \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu}, \\ \phi^{\mu\nu} &= \widetilde{\gamma} \left(2 \nabla^{[\mu} u^{\nu]} + 4 \Delta^{\mu\alpha} \Delta^{\nu\beta} \omega_{\alpha\beta} \right). \end{split}$$

Stability, causality, and boost invariant studies

- The system tends to be unstable and acausal in rest frame and boosted frame.
- Temperature evolution ,

Red (dashed) line represents the variation of temperature for Bjorken flow in relativistic hydro without spin. Brown (dashed-dotted) line represents the variation evolution in Navier-stokes theory with spin. We consider $T_0 = 200$ MeV and $\tau_0 = 0.5$ fm.

Muller-Israel-Stewart-Like formulation

• One of the possible scenarios is to allow for every variable in $T^{\mu\nu}$ and $S^{\lambda\mu\nu}$ to be dynamical, i.e.,

$$egin{array}{ccc} {\sf T}^{\mu
u} & \longrightarrow {\sf 16} \ {\sf evolution} \ {\sf equations}, \ {\sf S}^{\lambda\mu
u} & \longrightarrow {\sf 24} \ {\sf evolution} \ {\sf equations}. \end{array}$$

Muller-Israel-Stewart entropy production rate with spin,

$$\partial_{\mu} \mathbf{s}^{\mu}_{\mathbf{IS}} = (\partial_{\mu} \beta_{\nu} + 2\boldsymbol{\omega}_{\mu\nu} \beta) \delta \mathbf{T}^{\mu\nu}_{A} + \delta \mathbf{T}^{\mu\nu}_{S} \partial_{\mu} \beta_{\nu} - \delta \mathbf{S}^{\mu\alpha\beta} \partial_{\mu} (\beta \boldsymbol{\omega}_{\alpha\beta}) + \partial_{\mu} \mathbf{Q}^{\mu} \geq 0.$$

16+24 dynamical equations

$$\begin{split} D\varepsilon + (\varepsilon + p)\theta &= \pi^{\mu\nu}\partial_{\mu}u_{\nu} + \Pi\theta - \nabla \cdot q + \phi^{\mu\nu}\partial_{\mu}u_{\nu} \,, \\ (\varepsilon + p)Du^{\alpha} - \nabla^{\alpha}p &= -\Delta^{\alpha}_{\nu}\partial_{\mu}\pi^{\mu\nu} - \Delta^{\mu\alpha}\partial_{\mu}\pi + \pi Du^{\alpha} - q^{\mu}\partial_{\mu}u^{\alpha} \\ &+ \Delta^{\alpha}_{\nu}Dq^{\nu} + q^{\alpha}\theta - \Delta^{\alpha}_{\nu}\partial_{\mu}\phi^{\mu\nu} \,, \\ \tau_{\Pi}D\Pi + \Pi &= \zeta \left[\theta + Ta_{1}\Pi\theta + \Pi\Pi Da_{1} \right] \,, \\ \tau_{\pi}\Delta^{\mu\nu}_{\alpha\beta}D\pi^{\alpha\beta} + \pi^{\mu\nu} &= 2\eta \left[(\nabla^{(\mu}u^{\nu)} - \frac{1}{3}\theta\Delta^{\mu\nu}) + Ta_{2}\theta\pi^{\mu\nu} + T\pi^{\mu\nu}Da_{2} \right] \,, \\ \tau_{q}\Delta^{\mu}_{\nu}Dq^{\nu} + q^{\mu} &= \lambda \left[(\beta\nabla^{\mu}T + Du^{\mu} - 4\omega^{\mu\nu}u_{\nu}) - Ta_{4}q^{\mu}\theta - Tq^{\mu}Da_{4} \right] \,, \\ \tau_{\phi}\Delta^{[\mu\nu]}_{(\alpha\beta]}D\phi^{\alpha\beta} + \phi^{\mu\nu} &= \gamma \left[(\beta\nabla^{[\mu}u^{\nu]} + 2\beta\Delta^{\mu\alpha}\Delta^{\nu\beta}\omega_{\alpha\beta}) + a_{5}\theta\phi^{\mu\nu} + \phi^{\mu\nu}Da_{5} \right] \,, \\ \\ T_{\phi}\Delta^{\mu}_{\alpha\beta}D\tau^{\alpha\beta}_{\tau} + \tau^{\mu\nu}_{\tau} = \chi_{2} \left[-u^{\alpha}(\Delta^{\tau\mu}\Delta^{\nu} + \Delta^{\tau\nu}\Delta^{\alpha\beta}) - \frac{2}{3}\Delta^{\tau\rho}\Delta^{\mu\nu})\nabla_{\gamma}(\beta\omega_{\alpha\rho}) + \tilde{a}_{2}\theta\tau^{\mu\nu}_{s} + \tau^{\mu\nu}_{s}D\tilde{a}_{2} \right] \,, \\ \\ \tau_{\tau_{c}}\Delta^{[\mu\nu]}_{\alpha\beta}D\tau^{\alpha\beta}_{s} + \tau^{\mu\nu}_{s} = \chi_{3} \left[-u^{\alpha}(\Delta^{\tau\mu}\Delta^{\mu\nu} - \Delta^{\tau\nu}\Delta^{\rho\mu})\nabla_{\gamma}(\beta\omega_{\alpha\rho}) + \tilde{a}_{3}\theta\tau^{\mu\nu}_{s} + \tau^{\mu\nu}_{s}D\tilde{a}_{3} \right] \,, \\ \\ \tau_{\theta}\Delta^{\alpha}_{\sigma}\Delta^{\alpha}_{\sigma}\Delta^{\alpha}_{\sigma}\Delta^{\mu}_{\sigma}\Delta^{\beta}_{\sigma}D\Theta^{\alpha\beta} + \Theta^{\alpha\mu\nu} = -\chi_{4} \left[-\Delta^{\delta\mu}\Delta^{\mu\nu}\Delta^{\alpha}\nabla_{\gamma}(\beta\omega_{\delta\mu}) + \tilde{u}_{4}\Theta^{\alpha\mu\nu} - \Delta^{\alpha\mu\nu}_{\alpha}Da^{\mu\nu}_{\alpha} \right] \,, \end{split}$$

11/23

- We obtain relaxation-type dynamical equations for each dynamical variables.
- The resultant transport coefficients are,

$$\kappa, \eta, \zeta, \lambda, \gamma, \chi_1, \chi_2, \chi_3, \chi_4.$$

• The system tends to be stable and causal in rest frame provided the used relaxation times are sufficiently large.

Outlook

Formulate analytically

Solve numerically

We are here

Calculate Observables at freeze-out

Compare with experiments

Relativistic quantum-statistical approach: Results and future directions

 F. Becattini, A. Daher, and X.-L. Sheng, "Entropy current and entropy production in relativistic spin hydrodynamics," *Phys. Lett. B* 850 (2024) 138533, arXiv:2309.05789 [nucl-th].

+ work in progress

Local equilibrium is achieved at initial hypersurface Σ_0 , where entropy is maximum provided that the mean vales of energy, momentum, particle number, and spin currents are their actual values,

$$S = -\operatorname{Tr}(\widehat{\rho}\log\widehat{\rho})$$

$$\begin{split} F\left[\hat{\rho}\right] &= -\operatorname{Tr}\left[\hat{\rho}\log\hat{\rho}\right] - \int d\Sigma_0 \ n_{\mu} \left(T_{\mathrm{LE}}^{\mu\nu} - T^{\mu\nu}\right) \beta_{\nu}(x) - \int \ d\Sigma_0 \ n_{\mu} \left(j_{\mathrm{LE}}^{\mu} - j^{\mu}\right) \zeta(x) \\ &- \int \ d\Sigma_0 \ n_{\mu} \left(S_{\mathrm{LE}}^{\mu\lambda\nu} - S^{\mu\lambda\nu}\right) \Omega_{\lambda\nu}(x) \\ T_{\mathrm{LE}}^{\mu\nu} &\sim \operatorname{Tr}\left[\hat{\rho}\,\widehat{T}^{\mu\nu}\right] \\ T^{\mu\nu} &\equiv \text{Actual Value} \end{split}$$

Near local equilibrium at the hypersurface Σ , the entropy is defined as,

$$S = -\operatorname{Tr}(\widehat{\rho}_{\mathrm{LE}}\log\widehat{\rho}_{\mathrm{LE}})$$
$$= \int_{\Sigma} \mathrm{d}\Sigma_{\mu} \left(\phi^{\mu} + T_{\mathrm{LE}}^{\mu\nu}\beta_{\nu} - \zeta j_{\mathrm{LE}}^{\mu} - \frac{1}{2}\Omega_{\lambda\nu}\mathcal{S}_{\mathrm{LE}}^{\mu\lambda\nu} \right)$$

$$\partial_{\mu}s^{\mu} = \delta T^{\mu\nu}_{S}\xi_{\mu\nu} - \delta j^{\mu}\partial_{\mu}\zeta + \delta T^{\mu\nu}_{A}(\Omega_{\mu\nu} - \varpi_{\mu\nu}) - \frac{1}{2}\delta\mathcal{S}^{\mu\lambda\nu}\partial_{\mu}\Omega_{\lambda\nu}$$

The goal is to determine,

$$\delta \mathbf{T}_{S}^{\mu\nu}, \ \delta \mathbf{T}_{A}^{\mu\nu}, \ \delta \mathbf{j}^{\mu}, \ \delta \mathbf{S}^{\lambda\mu\nu}$$
 16/23

In general and without imposing any physical assumption, we can express dissipative currents in terms of linear responses to all fields in the system,

$$\delta T_S^{\mu\nu} = H^{\mu\nu\rho\sigma}\xi_{\rho\sigma} + K^{\mu\nu\rho}\partial_\rho\zeta + L^{\mu\nu\rho\sigma}\left(\Omega_{\rho\sigma} - \varpi_{\rho\sigma}\right) + M^{\mu\nu\rho\sigma\tau}\partial_\rho\Omega_{\sigma\tau},$$

$$\delta T^{\mu\nu}_A = N^{\mu\nu\rho\sigma}\xi_{\rho\sigma} + P^{\mu\nu\rho}\partial_\rho\zeta + Q^{\mu\nu\rho\sigma}\left(\Omega_{\rho\sigma} - \varpi_{\rho\sigma}\right) + R^{\mu\nu\rho\sigma\tau}\partial_\rho\Omega_{\sigma\tau},$$

$$\delta j^{\mu} = G^{\mu\rho\sigma}\xi_{\rho\sigma} + I^{\mu\rho}\partial_{\rho}\zeta + O^{\mu\rho\sigma}(\Omega_{\rho\sigma} - \varpi_{\rho\sigma}) + F^{\mu\rho\sigma\tau}\partial_{\rho}\Omega_{\sigma\tau},$$

$$\delta S^{\mu\lambda\nu} = T^{\mu\lambda\nu\rho\sigma}\xi_{\rho\sigma} + U^{\mu\lambda\nu\rho}\partial_{\rho}\zeta + V^{\mu\lambda\nu\rho\sigma}\left(\Omega_{\rho\sigma} - \varpi_{\rho\sigma}\right) + W^{\mu\lambda\nu\rho\sigma\tau}\partial_{\rho}\Omega_{\sigma\tau}.$$

Hence the goal reduces to determining the coefficient tensors,

$$H^{\mu
u,
ho,\sigma}$$
, $K^{\mu
u
ho}$, $L^{\mu
u
ho\sigma}$, $M^{\mu
u
ho\sigma au}$

 $N^{\mu\nu\rho\sigma}$, $P^{\mu\nu\rho}$, $Q^{\mu\nu\rho\sigma}$, $R^{\mu\nu\rho\sigma\tau}$

 $G^{\mu\rho\sigma}$, $I^{\mu\rho}$, $O^{\mu\rho\sigma}$, $F^{\mu\rho\sigma\tau}$

 $T^{\mu\lambda\nu\rho\sigma}$, $U^{\mu\lambda\nu\rho}$, $V^{\mu\lambda\nu\rho\sigma}$, $W^{\mu\lambda\nu\rho\sigma\tau}$

The minimum physical requirement is that, the tensor coefficients should be invariant under spatial rotations in the local co-moving frame of the fluid. 18/23

For that, we decompose the tensor coefficients in terms of irreducible representations of the rotation group SO(3). The irreducible basis are constructed by the fluid 4-velocity \mathbf{u}^{μ} , the projector $\Delta_{\mu\nu}$, and the rank-3 tensor $\epsilon^{\mu\nu\lambda\gamma}\mathbf{u}_{\gamma}$,

Vector:
$$V^{\mu} = (u^{\mu} \oplus \Delta^{\mu}_{\alpha})$$

Symmetric 2-tensor: $B^{\mu\nu} = (u^{\mu}u^{\nu} \oplus \Delta^{\mu\nu} \oplus u^{\mu}\Delta^{\nu}_{\alpha} + u^{\nu}\Delta^{\mu}_{\alpha} \oplus \Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta} + \Delta^{\nu}_{\alpha}\Delta^{\mu}_{\beta}),$

Antisymmetric 2-tensor: $A^{\mu\nu} = (u^{\mu}\Delta^{\nu}_{\alpha} - u^{\nu}\Delta^{\mu}_{\alpha} \oplus \epsilon^{\mu\nu\tau\alpha}u_{\tau}).$

.

Imposing the below physical conditions allows us to cancel out all the nonphysical coefficients,

• Matching conditions,

$$n_{\mu}(\delta T_{S}^{\mu\nu} + \delta T_{A}^{\mu\nu}) = 0, \quad n_{\mu}\delta j^{\mu} = 0, \quad n_{\mu}\delta S^{\mu\lambda\nu} = 0.$$

• Entropy production semi-positivity condition $\partial_{\mu}s^{\mu} \geq 0$.

Outlook

Compare with experiments

Conclusion and outlooks

- 1. We develop Navier-Stokes-like and Muller-Israel-Stewart-like formulations to study a relativistic fluid of particles with spin such as the QGP produced in heavy-ion collision experiments.
- 2. We used a first-principle quantum-statistical methods to derive the entropy current, entropy production rate, and obtain the transport coefficients (Work in progress).

Polish National Science Centre Grants No. 2018/30/E/ST2/00432

K R A K O W S K A INTERDYSCYPLINARNA SZKOŁA DOKTORSKA

 $\langle | \rangle |$

Polish National Agency for Academic Exchange NAWA under the Programme

STER-Internationalisation of doctoral schools, Project no. PPI/STE/2020/1/00020

THANK YOU