Exploring the baryon correlation puzzle via angular correlations from ALICE

Małgorzata Anna Janik on behalf of the ALICE Collaboration Warsaw University of Technology

XVII Polish Workshop on Relativistic Heavy-Ion Collisions

Phase diagram and Equation of State of strongly interacting matter

14-15/12/2024, PolishWorkshop 2024

14-15/12/2024, PolishWorkshop 2024

$\Delta\eta\Delta\varphi$ of identified particles

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

14-15/12/2024, PolishWorkshop 2024

4/22

Mesons and baryons compared to MC models

MC models can reproduce meson correlations, but not those of baryons ALICE Collaboration, Eur.Phys.J.C(2017)77:569

14-15/12/2024, PolishWorkshop 2024

Baryon correlation puzzle

- Other baryons?
 - Anticorrelation is a common effect of all baryons;
- Coulomb repulsion?
 - ∧ baryons are neutral → no
 Coulomb repulsion
- Fermi-Dirac Quantum Statistics
 p and Λ are not identical
 - p and ∧ are not identical no effect from Fermi-Dirac QS

All features observed in pp are also seen for $\Lambda\Lambda$ and $p\Lambda$ correlations

ALICE Collaboration, Eur.Phys.J.C(2017)77:569

14-15/12/2024, PolishWorkshop 2024

Theoretical developments

Ł. Graczykowski, Polish Heavy-Ion Workshop, Kielce 2023, https://indico.cern.ch/event/891677/contributions/5682601/

- 1. Strong interaction, QS:
 - 1. M. Janik, Ł. Graczykowski, Phys.Rev.C 104 (2021) 5, 054909
- 2. AMPT
 - 1. L.Y. Zhang et al., Phys. Rev. C 98 (2018) 3, 034912
 - 2. L.Y. Zhang et al., Phys. Lett. B 829 (2022) 137063
- 3. PYTHIA
 - 1. N. Demazure, V. Gonzalez, F. Llanes-Estrada Few Body Systems 64 (2023) 57
 - 2. Y. Patley, B. Nandi, S. Dash, V. Gonzalez, C. Pruneau, https://arxiv.org/abs/2408.09923 (2024)
 - 3. L. Lönnblad, H., Euro.Phys.J.C Volume 83, 1105, (2023)
- 4. HERWIG
 - 1. PHENOmenal meeting, https://indico.cern.ch/event/1352906/

Wishlist of Herwig for ALICE

- All $C_{B,M}(\Delta \phi/\eta)$, $C_{B,\overline{B}}(\Delta \phi/\eta)$, $C_{B,B'}(\Delta \phi/\eta)$ and $C_{M,M'}(\Delta \phi/\eta)$ correlations, where $B, B' \in \{p, \Lambda, \Sigma^{(*)}, \Xi^{(*)}, \Delta, \Omega\}$ and $M, M' \in \{\pi, \eta, K, \rho, \phi\}$
- Especially same-and opposite-sign charge/flavour/baryon number
- Are charm and/or bottom particle correlations possible?
- Divided in multiplicity bins like [Ruggiano 2023; Acharya et al. 2023]
- Analyses for [Ruggiano 2023; Acharya et al. 2023] in Rivet

HERWIG PHENOmenal meeting, <u>https://indico.cern.ch/event/1352906/</u>

11/13 December 10, 2023 S.K.: Baryons as a Probe for Hadronization

Institute for Theoretical Physics ITP RG Gieseke

Slide from Stefan Kiebacher

Experimental developments in ALICE

Done:

- 1. Energy dependence (7 TeV \rightarrow 13 TeV)
- 2. Multi-strange baryons (Ξ hadron)
- 3. Multiplicity dependence
- 4. System dependence (pp, p-Pb, Pb-Pb)

In progress:

- 1. Correlations with Λ , Ξ , Ω in Run 3
- 2. Correlations $p \phi$ (comparable mass, different # of quarks)

Outlook:

- 1. Correlations with heavy flavour
 - D-mesons
 - \\\\^+c
- 2. Analysis of jet composition (how many baryons in jets?)

Angular correlations between charged Ξ and identified hadrons

ALICE Collaboration, *JHEP* 09 (2024) 102

14-15/12/2024, PolishWorkshop 2024

Ξ correlations for baryons

ALICE Collaboration, *JHEP* 09 (2024) 102

Ξ - p correlations, multiplicity dependence

ALICE Collaboration, *JHEP* 09 (2024) 102

14–15/12/2024, PolishWorkshop 2024

Ξ - Λ correlations, multiplicity dependence

Projections Multiplicity dependence

ALICE Collaboration, *JHEP* 09 (2024) 102

14-15/12/2024, PolishWorkshop 2024

Ξ - Ξ correlations, multiplicity dependence

ALICE Collaboration, *JHEP* 09 (2024) 102

14–15/12/2024, PolishWorkshop 2024

Angular correlations with strange hadrons

14-15/12/2024, PolishWorkshop 2024

Multiplicity and system (pp / p-Pb / Pb-Pb) dependence

Publication in progress...

14-15/12/2024, PolishWorkshop 2024

17/22

https://arxiv.org/abs/2403.02549

14-15/12/2024, PolishWorkshop 2024

ALI-PREL-585620

- The azimuthal flow effect appears, especially at the mid centrality classes;
- The anticorrelation is strong for all centralities, shows a clear dip

ALI-PREL-585624

- The azimuthal flow effect appears at the mid centrality classes;
- The annihilation phenomenon a sharp dip in (0,0) is observed in all centralities

pp, p–Pb and Pb–Pb comparison

Comparison of pp, p–Pb and Pb–Pb collision systems at the LHC energies for all particle types and all centralities

14-15/12/2024, PolishWorkshop 2024

Conclusions

• Plethora of new experimental results:

- The study of correlations with Ξ baryons shows that the anti-correlation effect persists also for heavier, multi-strange baryons (for p − Ξ, Λ − Ξ, Ξ − Ξ).
- The study of anticorrelation across **different multiplicity classes** has been conducted, revealing that the phenomenon persists and intensifies with higher multiplicity.
- The study of the anticorrelation over different multiplicity classes has been extended to **different collision systems**, showing that the phenomenon persists even in HIC and shows stronger behavior than expected.
- The comparison of the three collision systems suggests that the physics in pp and p–Pb collisions are similar while differing from those in Pb–Pb collisions, as expected.

Outlook

• Ongoing studies:

- Study of p– ϕ pairs (similar mass, but no baryon number).
- Study of baryonic particles pairs at the maximum energy and luminosity provided in Run 3; comparison of p-p, p - Ξ, p - Ω, etc.; study the influence of strangeness.
- Future plans:
 - Study of charm particle correlations (*D*-mesons and Λ_c^+ baryons with identified particles).
 - Jet composition studies. Differences in baryon/meson production in quark and gluon jets.

14–15/12/2024, PolishWorkshop 2024

BACKUP SLIDES

14-15/12/2024, PolishWorkshop 2024

$\Delta\eta\Delta\varphi$ experimental correlation function

14-15/12/2024, PolishWorkshop 2024

$\Delta\eta\Delta\varphi$ experimental correlation function

14-15/12/2024, PolishWorkshop 2024

Limitation of the probability ratio definition

- Difficult to compare results over different multiplicities/centralities;
 - \circ Difference in multiplicities due to a trivial scaling of $1/{\rm N}$
 - \circ pp, p–Pb, and Pb–Pb results show differences in multiplicities
 - are not easily comparable

Rescaled two-particle correlation function

- How to overcome the trivial scaling 1/N?
 - \circ Use a rescaled two-particle correlation function (C_R)

$$C_{R}(\Delta y, \Delta \varphi) = \frac{1}{2\pi} \left\langle \frac{dN_{a}}{d\varphi} \right\rangle (C_{P} - 1)$$

- $N_{\rm av} = \frac{1}{2\pi} \left\langle \frac{\mathrm{d}N_{\rm a}}{\mathrm{d}\varphi} \right\rangle$ is the average number of particle type produced in the analyzed multiplicity/centrality classes;
- \circ *a* is the particle type analyzed (PID);
- \circ definition inspired by STAR Collaboration

$$R_2(\Delta y, \Delta \varphi) = \frac{\langle n \rangle^2}{\langle n(n-1) \rangle} \frac{\rho_2(\Delta y, \Delta \varphi)}{\rho_1(y_1, \varphi_1)\rho_1(y_2, \varphi_2)} - 1$$

Physical Review C 101, 014916 (2020)

14-15/12/2024, PolishWorkshop 2024

Data samples & settings

- pp collisions at 13 TeV registered by ALICE in 2016, 2017 and 2018.
- p-Pb collisions at 5.02 TeV registered by ALICE in 2017.
- Pb-Pb collisions at 5.02 TeV registered by ALICE in 2015.

- Tracking:
 - Inner Tracking System (ITS);
 - Time Projection Chamber (TPC);
- Particle Identification:
 - Time Projection Chamber (TPC);
 Time of Flight (TOF);
- Kinematic cuts:
 - |y| < 0.5;
 - pions : $0.2 < p_{\rm T} < 2.5 \, {\rm GeV}/c$;
 - kaons : $0.5 < p_{\rm T} < 2.5 ~{\rm GeV}/c$;
 - $\circ~{\rm protons}$: 0.5 $< p_{\rm T} <$ 2.5 GeV/c.

https://arxiv.org/abs/2403.02549

14-15/12/2024, PolishWorkshop 2024

Can baryonic correlations be reproduced by models?

14-15/12/2024, PolishWorkshop 2024

ALI-PREL-562908

The models fail to reproduce the anticorrelations in both pp and p-Pb collision systems

14-15/12/2024, PolishWorkshop 2024

Link presentation WPCF 2023

Model comparison in small systems

Unlike-sign protons

ALI-PREL-562912

The models qualitatively reproduce the near-side region, but not the away-side.

14-15/12/2024, PolishWorkshop 2024

Like-sign protons

- AMPT model reproduces the data qualitatively but not quantitatively;
- HIJING fails to reproduce the data
 - \circ anisotropic flow not included in the model.

Like-sign protons

• AMPT model reproduces qualitatively the anticorrelation but not quantitatively;

14-15/12/2024, PolishWorkshop 2024

33/22

Unlike-sign protons

- AMPT model reproduces qualitatively but not quantitatively the data;
- HIJING fails to reproduce the data

Model comparison in Pb–Pb

 $\,\circ\,$ anisotropic flow not included in the model.

14-15/12/2024, PolishWorkshop 2024

Unlike-sign protons

• AMPT model reproduces quite well the data

14-15/12/2024, PolishWorkshop 2024

An overview of the meson and baryon in Pb–Pb

14-15/12/2024, PolishWorkshop 2024

Like-sign pions

ALICE Preliminary, Pb–Pb $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ $\pi^{-}\pi^{-} + \pi^{+}\pi^{+}, |y| \le 0.5, 0.2 < p_{_{T}} < 2.5 \text{ GeV}/c$

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

Unlike-sign pions

ALICE Preliminary, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $\pi^+\pi^-$, $|y| \le 0.5$, 0.2 < ρ_{τ} < 2.5 GeV/c

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

pp, p–Pb, and Pb–Pb comparison – $dN_{\rm ch}/d\eta$

The $dN_{ch}/d\eta$ values were adjusted to the multiplicity/centrality classes used.

collision system	d ${\it N_{ m ch}}/{ m d}\eta$						
	0–20%	20-40%	40–70%		70-100%		
рр	19.1	9.18	5.1			2.55	
	0-20%	20-40%	40–70%		70-100%		
p–Pb	35.55	23.2	9.6		4		
Pb–Pb	0–20%	20-40%	40–50%	50–60%	60–70%	70–80%	80–90%
	1570	649	318	183	96.3	44.9	17.5

Based on the values got from literature, the closest values are: \circ 0–20% in pp with 20–40% in p–Pb and 80–90% in Pb–Pb

14-15/12/2024, PolishWorkshop 2024

Like-sign kaons

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

Unlike-sign kaons

ALICE Preliminary, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV K⁺K⁻, |y| ≤ 0.5, 0.5 < p_{τ} < 2.5 GeV/c

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

$\Delta y \Delta \varphi$ correlation functions Like-sign protons

ALICE Preliminary, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV $pp+\overline{pp}, |y| \le 0.5, 0.5 < p_{\tau} < 2.5 \text{ GeV}/c$ 0-20% 20-40% 40-50% 50-60% (1.004 0.902 0.998 $\mathbb{C}_{p}(\Delta \varphi, \Delta y)$ $\mathbb{C}_{p}(\Delta \varphi, \Delta y)$ $C_{p}(\Delta \varphi, \Delta y)$ 1.02 1.02 0. 0. 0.5 0.5 0.5 1 1, 1 No (rad Ap (rad) Ap (rad) NO (rad 60-70% 70-80% 80-90% $\mathcal{C}_{p}(\Delta \varphi, \Delta y)$ $\Sigma_p(\Delta \varphi, \Delta y)$ $C_p(\Delta \varphi, \Delta y)$ 1.04 1.05 1.02 0.9 0.9 1 1 No (rad No (rad NQ1 ALI-PREL-585599

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

$\Delta y \Delta \varphi$ correlation functions Unlike-sign protons

ALICE Preliminary, Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ p \overline{p} , $|y| \le 0.5$, $0.5 < p_{\tau} < 2.5 \text{ GeV}/c$

- The lower the centrality, the lower the flow effect;
- The correlations are performed using probability ratio definition;

14-15/12/2024, PolishWorkshop 2024

Like-sign pions

ALICE Preliminary, Pb–Pb $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ $\pi^{-}\pi^{-} + \pi^{+}\pi^{+}, |y| \le 0.5, 0.2 < p_{_{T}} < 2.5 \text{ GeV}/c$

- The lower the centrality, the lower the flow effect;
- The correlations are performed using rescaled two-particle correlation function definition;

14-15/12/2024, PolishWorkshop 2024

Unlike-sign pions

ALICE Preliminary, Pb–Pb $\sqrt{s_{_{
m NN}}}$ = 5.02 TeV $\pi^+\pi^-$, $|y| \le 0.5$, 0.2 < $p_{_{
m T}}$ < 2.5 GeV/c

- The lower the centrality, the lower the flow effect;
- The correlations are performed using rescaled two-particle correlation function definition;

14-15/12/2024, PolishWorkshop 2024

Like-sign kaons

- The lower the centrality, the lower the flow effect;
- The correlations are performed using rescaled two-particle correlation function definition;

14-15/12/2024, PolishWorkshop 2024

Unlike-sign kaons

ALICE Preliminary, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV K⁺K⁻, |y| ≤ 0.5, 0.5 < p_{τ} < 2.5 GeV/c

- The lower the centrality, the lower the flow effect;
- The correlations are performed using rescaled two-particle correlation function definition;

14-15/12/2024, PolishWorkshop 2024

An overview of the meson and baryon in Pb-Pb

Projection on $\Delta \varphi$ using probability ratio definition

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Like-sign pions

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

PROBABILITY ratio

Unlike-sign pions

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - o anisotropic flow not included in the model.

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

PROBABILITY ratio

Unlike-sign kaons

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

PROBABILITY ratio

Like-sign protons

- AMPT model can't reproduce the anticorrelation;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Unlike-sign protons

- AMPT model can reproduce qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

PROBABILITY ratio

Like-sign pions

• AMPT model fail to reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Unlike-sign pions

• AMPT model fail to reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Like-sign kaons

• AMPT model can reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Unlike-sign kaons

• AMPT model can reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

PROBABILITY ratio

Like-sign protons

• AMPT model can reproduce qualitatively well the near side region;

14-15/12/2024, PolishWorkshop 2024

37/22

PROBABILITY ratio

Unlike-sign protons

• AMPT model can reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - $\,\circ\,$ anisotropic flow not included in the model.

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - o anisotropic flow not included in the model.

- AMPT model reproduce the data qualitatively but not quantitatively;
- HIJING fail to reproduce the data
 - \circ anisotropic flow not included in the model.

Rescaled two-particle CF

Like-sign pions

• AMPT model fail to reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

Rescaled two-particle CF

Unlike-sign pions

• AMPT model fail to reproduce the near side region;

14-15/12/2024, PolishWorkshop 2024

Rescaled two-particle CF

Like-sign kaons

• AMPT model can reproduce qualitatively the near side region;

14-15/12/2024, PolishWorkshop 2024

Rescaled two-particle CF

Unlike-sign kaons

• AMPT model can reproduce qualitatively the near side region;

14-15/12/2024, PolishWorkshop 2024

37/22