

Faculty of Physics Warsaw University of Technology

Femtoscopy measurements of the $p - \Lambda$ and $d - \Lambda$ systems as a tool for studying the strong interaction parameters

Diana Pawłowska-Szymańska for the HADES Collaboration diana.pawlowska@pw.edu.pl

XVII Polish Workshop on Relativistic Heavy-Ion Collisions 14-15.12.2024, Warsaw, Poland

Motivation

- 1. Hyperons are expected to appear **in the core of Neutron Stars** (NS)
- 2. Hyperons **soften the Equation of State** (EoS) reduction of maximum NS mass

Motivation

- 1. Hyperons are expected to appear **in the core of Neutron Stars** (NS)
- 2. Hyperons **soften the Equation of State** (EoS) reduction of maximum NS mass
- 3. Unique information on **spin and state, source size, potential type, interaction lenght...**

1. d- Λ CF offers additional insights into the structure of the hypertriton ${}^{3}_{A}H$ and the nature of 3-body interactions

$$^3_{\Lambda}H o p + \pi^- + d$$
 decay

The HADES experiment

Lambda reconstruction

DCA between daughter to PV	> 0.8 cm for p > 2.4 cm for π ⁻
DCA between daughters	< 0.6 cm
DCA between V ⁰ and PV	< 0.5 cm
Decay lenght	> 6.5 cm

Femtoscopy - introduction

Femtoscopy (originating from Hanbury-Brown and Twiss interferometry): a method to probe **geometric** and **dynamic** properties of the source.

Femtoscopy - introduction

Femtoscopy (originating from Hanbury-Brown and Twiss interferometry): a method to probe **geometric** and **dynamic** properties of the source.

 \vec{r} – relative distance between two particles

Characteristics of the particle-emitting source:

size – R correlation strength - λ EMITTING

Femtoscopy - introduction

Femtoscopy (originating from Hanbury-Brown and Twiss interferometry): a method to probe **geometric** and **dynamic** properties of the source.

momentum

 $S(\vec{r})$ – source function $\Psi(k^*, \vec{r})$ – pair wave function k^* – center-of- mass momentum

 \vec{r} – relative distance between two particles

Characteristics of the particle-emitting source:

size – R correlation strength - λ EMITTING SOURCE

Strong interactions between particles:

 $B(\vec{q})$ - uncorrelated

scattering length – f_0 effective range – d_0

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

Assumptions:

- 1. Smoothness approximation for source function.
- 2. Effective range expansion for pair wave function.
- 3. Static and spherical Gaussian source.
- 4. Approximate the wave function by its asymptotic form.

$$CF(k^*) \approx 1 + \frac{|f(k^*)|^2}{2R^2}F(d_0) + \frac{2\Re f(k^*)}{\sqrt{\pi R}}F_1(2k^*R) - \frac{\Im f(k^*)}{R}F_2(2k^*R)$$

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

Assumptions:

- 1. Smoothness approximation for source function.
- 2. Effective range expansion for pair wave function.
- 3. Static and spherical Gaussian source.
- 4. Approximate the wave function by its asymptotic form.

$$CF(k^*) \approx 1 + \frac{|f(k^*)|^2}{2R^2} F(d_0) + \frac{2\Re f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\Im f(k^*)}{R} F_2(2k^*R)$$
Scattering amplitude
(effective range expansion)
$$f(k^*) \approx \frac{1}{-\frac{1}{f_0} + \frac{d_0k^{*2}}{2} - ik} \qquad f_0 - \text{scattering length}$$

$$d_0 - \text{effective range}$$

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

Assumptions:

- 1. Smoothness approximation for source function.
- 2. Effective range expansion for pair wave function.
- 3. Static and spherical Gaussian source.
- 4. Approximate the wave function by its asymptotic form.

$$CF(k^*) \approx 1 + \frac{|f(k^*)|^2}{2R^2} F(d_0) + \frac{2\Re f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\Im f(k^*)}{R} F_2(2k^*R)$$
Scattering amplitude
(effective range expansion)
$$f(k^*) \approx \frac{1}{-\frac{1}{f_0} + \frac{d_0k^{*2}}{2} - ik}$$

$$f_0 - \text{scattering length}$$

$$d_0 - \text{effective range}$$

$$F(d_0) = 1 - \frac{d_0}{2\sqrt{\pi}R}$$

Correction that accounts for the deviation of the true wave function from the asymptotic form

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

Assumptions:

- 1. Smoothness approximation for source function.
- 2. Effective range expansion for pair wave function.
- 3. Static and spherical Gaussian source.
- 4. Approximate the wave function by its asymptotic form.

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

Assumptions:

- 1. Smoothness approximation for source function.
- 2. Effective range expansion for pair wave function.
- 3. Static and s
- 4. Approxima

SPIN AVERAGED

works reasonably well for source sizes

 $-\frac{1}{f_0} + \frac{d_0 k^{*2}}{2} - ik$

 T_0 - scattering lenght

 d_0 - effective range

 $F_{1}(x) = \int_{0}^{x} dt \frac{e^{t^{2}} - x^{2}}{x}$ $F_{2}(x) = \frac{1 - e^{-x^{2}}}{x}$

larger than the range of interaction

Scattering amplitude (efective range expansion)

$$F(d_0) = 1 - \frac{d_0}{2\sqrt{\pi}R}$$

Correction that accounts for the devation of the true wave function from the asymptotic form

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

SPIN SEPARATED

singlet (S) ${}^{1}S_{0}$ triplet (T) ${}^{3}S_{1}$

Pair wave function:

$$|\Psi(k^*,\vec{r})|^2 \to f_{S1} |\Psi_{1/2}(k^*,\vec{r})|^2 + f_{S2} |\Psi_{3/2}(k^*,\vec{r})|^2$$

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001

SPIN SEPARATED

singlet (S) ${}^{1}S_{0}$ triplet (T) ${}^{3}S_{1}$

Pair wave function:

$$|\Psi(k^*,\vec{r})|^2 \to f_{S1} |\Psi_{1/2}(k^*,\vec{r})|^2 + f_{S2} |\Psi_{3/2}(k^*,\vec{r})|^2$$

$$CF(k^*) \approx 1 + \frac{|f(k^*)|^2}{2R^2} F(d_{01}) + \frac{2\Re f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\Im f(k^*)}{R} F_2(2k^*R) + \frac{|f(k^*)|^2}{2R^2} F(d_{02}) + \frac{2\Re f(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{\Im f(k^*)}{R} F_2(2k^*R)$$

Parameters of strong interaction scattering length: $f_0(S)$, $f_0(T) | f_0(D)$, $f_0(Q)$ effective range: $d_0(S)$, $d_0(T) | d_0(D)$, $d_0(Q)$

p-Λ correlation functions

p- Λ CF - Ag+Ag at $\sqrt{s_{NN}}$ = 2.55 GeV

0-30% central events

6

A^{1/3} part 8

10

12

14

0 -

0

2

4

centrality dependence

k* (MeV/c)

centrality dependence

0.8

0.6

0.4

0.2

0 0

200

400 600 800

1000 1200

0

0.05

0.1

0.15

0.2

0.3

0.25 k* (MeV/c)

HADES

1400 1600

p- Λ CF - Ag+Ag at $\sqrt{s_{NN}}$ = 2.55 GeV

pair transverse mass dependence Rapidity

k* (MeV/c)

2 C(k*) 1.8

 $k_T \in (0-400) \text{ MeV/c}$

d-A correlation functions

d-Λ CF – theoretical predictions

2S - spin averaged results where in doublet state the effective range expansion (ERE) parameters of Cobis
4S - quartet state results building on AN scattering lengths from Alexander (A), Rijken(f) and Haidenbauer (E)

		Cobis[1]	Hammer[2]	Alexander[3]	Rijken[4]	Haidenbauer[5]
D	f ₀ [fm]	$-16.3^{+2.1}_{-4.0}$	$-16.8^{+2.4}_{-4.4}$			
D	d ₀ [fm]	3.2	2.3			
0	f ₀ [fm]			7.6	10.8	17.3
Q	d ₀ [fm]			3.6	3.8	3.6

[1] A.Cobis, J.Phys. G 23, 401 (1997)
[2] H.W.Hammer, Nucl. Phys. A 705, 173 (2002)
[3] G.Alexander, Phys. Rev. 173, 1452 (1968)
[4] T.A.Rijken, Prog. Theor. Phys. Suppl. 185, 14 (2010)

d- Λ CF - Ag+Ag at $\sqrt{s_{NN}}$ = 2.55 GeV

0-30% central events

d- Λ CF - Ag+Ag at $\sqrt{s_{NN}}$ = 2.55 GeV

0-30% central events

	D	f ₀ [fm]	$-12^{+1.44}_{-3.92}$
		d ₀ [fm]	$4^{+0.18}_{-0.53}$
	Q	f ₀ [fm]	$15^{+1.73}_{-2.58}$
		d ₀ [fm]	$4^{+0.13}_{-0.28}$

d- Λ CF - Ag+Ag at $\sqrt{s_{NN}}$ = 2.55 GeV

centrality dependence

Expected centrality dependence $r_0(0 - 10\%) > r_0(10 - 20\%) > r_0(20 - 30\%)$

Summary

The correlation signals in Ag+Ag collision were extracted : $p-\Lambda$ and $d-\Lambda$

$p-\Lambda$ correlation function

- 1. Resolution effects (θ , ϕ , p) studies are performed
- 2. Systematics studies are performed
- 3. Detector effects, purity determination and model interference are studied
- 4. Parameters of strong interaction:

Singlet state	$f_0 = 0.80^{+0.39}_{-0.32} \text{fm}$	$d_0 = 0.01 fm$
Triplet state	$f_0 = 1.89^{+0.10}_{-0.09} fm$	$d_0 = 3.76^{+0.27}_{-0.25} \text{fm}$

d-A correlation function

- 1. First results using data collected by HADES are presented
- 2. Preliminary parameters of strong interaction:

Doublet state	$f_0 = -12^{+1.44}_{-3.92} \text{fm}$	$d_0 = 4^{+0.18}_{-0.53} \text{fm}$
Quartet state	$f_0 = 15^{+1.73}_{-2.58} \text{fm}$	$d_0 = 4^{+0.13}_{-0.28} \text{fm}$

D. Pawłowska-Szymańska, WPCF 2024

Thank you for your attention!

Uncertainties of strong parameters in d-Λ

10% difference in χ^2 test

