Photon-photon femtoscopy in Ag+Ag collisions at $\sqrt{s_{NN}}$ =2.55 GeV

Mateusz Grunwald for the HADES collaboration

XVII Polish Workshop on Relativistic Heavy-Ion Collisions

Varsaw University of technology Warsaw University

of Technology

Outline

1) Motivation

- Why photon femtoscopy?
- 2) Femtoscopy technique
- 3) HADES experiment
- 4) Results:
 - Photon selection
 - Necessary corrections
 - Correlation functions + fits
- 5) Summary

Motivation

- Measure source properties at early stages -> inaccessible for hadrons
- Estimate average direct photon yield
- Easy in theory, challenging in practice

MATEUSZ GRUNWALD

XVII PWRHIC 2024, WARSAW | 15.12.2024

Femtoscopy

Goal - measure source's space-time characteristics and/or interactions between particles through low relative momentum correlations.

$$\begin{array}{c} \begin{array}{c} \mathbf{p} \\ \mathbf{p}$$

- \vec{x} : particle's position
- $ec{p}$: particle's momentum
- $\Psi(\vec{x}_1, \vec{p}_1; \vec{x}_2, \vec{p}_2)$: two particle's wave function
- $S(\vec{x})$: source function
- $q = |\vec{p}_1 \vec{p}_2|$: momentum difference
- $N_{same}(q)$: same event distribution
- $N_{mixed}(q)$: mixed event distribution

Experiment

Correlation function:

$$CF(q) = rac{N_{same}(q)}{N_{mixed}(q)}$$

HADES experiment

Photons at HADES

Electromagnetic calorimeters

Photon Conversion Method (PCM)

matter e-	(ECAL)
 High momentum and angular resolution Good lepton reconstruction efficiency at HADES Pure sample of photons 	 Great efficiency due to direct reconstruction of neutral particles Decently pure sample with suitable criteria
 Possible lepton close track effects due to small opening angle 2-step reconstruction (leptons → photons) → low efficiency Low conversion probability due to very small material budget of HADES (~10⁻⁵ prob. of reconstructing 2γ/event) 	 Calorimeter modules are usually big → poor angular resolution Low-end energy resolution is low due to ~1/√E behavior → low Q_{INV} might be fairly smeared, since: q_{inv} = m_{γγ} = √2E₁E₂(1 - cos(α_{γγ}))
Not enough photons reconstructed via PCM for femtoscopic measurements!	

Photons at HADES - ECAL

- Photon definition:
 - No matching with charged tracks or hits in ToF detectors within 6o
 - No charged particle with opening angle to cluster > 2.8 °
 - Cells closest to the beam line are not used
 - Total cluster energy > 100 MeV, minimal energy in each module > 50 MeV
 - β within 1 σ from expected photon peak (β ~1), adjusted for each module (and day/hour of a beamtime)

statistical uncertainties only

Photons at HADES - ECAL

 $UrQMD + HGeant \rightarrow HADES's simulations.$ No FSI/QS involved, no direct photons present. Used as a benchmark of detector effects

data \rightarrow real data gathered by HADES

Anticorrelation caused by uneven $\alpha_{\gamma\gamma}$ acceptance between same & mixed events ("hardware limit")

$$q_{inv} = \sqrt{(\vec{p_1} - \vec{p_2})^2 - (E_1 - E_2)^2}$$

statistical uncertainties only

Photon-photon correlation functions, Ag+Ag at 2.55 GeV

statistical uncertainties only

MATEUSZ GRUNWALD

XVII PWRHIC 2024, WARSAW | 15.12.2024

024

10

Photon-photon CF, Ag+Ag at 2.55 GeV, fits

Photon-photon CF, Ag+Ag at 2.55 GeV, fits

Summary & Outlook

- Photon correlation functions at low collision energy were achieved using HADES's calorimeters, with full systematical analysis as well.
- Expected HBT-like signal was observed for $q_{inv} < 50$ MeV/c, with additional contribution most likely coming from π^{0} π^{0} residua correlation
- The HBT parameters were extracted, although they suffer from high systematical uncertainty due to fitting variation differences. λ_{direct} parameter shows ~10 times higher than expected value. This might be related to differences between real data & detector's implementation in simulations. Additional study to confirm that is needed.

Thank you for your attention!

Photon-photon CF, Ag+Ag at 2.55 GeV, systematics

Single particle	Default value	variation	
No matching to charged track	> 6	± 2	
Opening angle with any charged track	< 2.8 °	± 0.8 °	
Minimal energy in module	> 50 MeV	± 20 MeV	
No for β	< 1	± 0.5	

Pair	Default value	variation	
Opening angle mapping	> value from map	± 10%	¢
Resolution correction	value from function	± 10%	¢
Purity correction	value from function	± 10%	

Strength of charged particle's VETO

Contribution from charged particles not matched with clusters

Minimal energy resolution

Contamination from other (fast) particles

- Stability/strength of two track effects correction
- Impact of resolution correction

Impact of purity correction

Photon-photon CF, Ag+Ag at 2.55 GeV, systematics

XVII PWRHIC 2024, WARSAW

15.12.2024