Observation of top-quark pair production in heavy-ion collisions with the ATLAS detector

Patrycja Potępa

Anthony Badea, Petr Baroň, Iwona Grabowska-Bołd, Jiří Kvita, Santu Mondal, Matthias Schott, Yuriy Volkotrub

1 Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in *p*+Pb collisions

JHEP 11 (2024) 101

2 Observation of $t\bar{t}$ production in the electron–muon channel in Pb+Pb collisions

*t*t production in Pb+Pb collisions

Quark-gluon plasma

- Quark-gluon plasma (QGP) is created in heavy-ion collisions at LHC and RHIC energies.
- QGP is short-lived with a lifetime of ~ 10 fm/c.
- Top quarks are expected to interact with the pre-equilibrium stage of the QGP.
- The time structure of the QGP can be studied via hadronically decaying W bosons.

Nucl.Phys.A 1047 (2024) 122874

 $t\bar{t}$ production in Pb+Pb collisions

Nuclear PDFs

- Top quarks provide novel probes of nuclear modifications to parton distribution functions (nPDF).
- Selection of world data constraining nPDFs is shown on the (x, Q²) plane.
- Recent ATLAS measurements cover a large phase-space region:
 - UPC dijets 5.02 TeV (arXiv:2409.11060),
 - dijets 8.16 TeV p+Pb (PRL 132 (2024) 102301),
 - tt 8.16 TeV p+Pb (JHEP 11 (2024) 101).

HP 2024 B. Gilbert

Top-quark pair production

- Top quarks can serve as novel probes of the QGP and the nPDF.
- *t*t production is measured in the combined
 l+jets and dilepton channel in *p*+Pb collisions.
- tī production is observed for the first time in the eµ channel in Pb+Pb collisions.
- *t*t̄ measurements by CMS:
 p+Pb collisions (PRL 119, 242001 (2017))
 Pb+Pb collisions (PRL 125, 222001 (2020)).

Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in *p*+Pb collisions

JHEP 11 (2024) 101

 $t\bar{t}$ production in Pb+Pb collisions

p+Pb data in ATLAS

- p+Pb data at $\sqrt{s_{\text{NN}}} = 8.16$ TeV collected in 2016 by ATLAS.
- The luminosity of 165 nb⁻¹, split into 57 nb⁻¹ (*p*+Pb) and 108 nb⁻¹ (Pb+*p*).
- Final luminosity calibration with a relative uncertainty of 2.4%.

Event display of a *p*+Pb collision containing a $t\bar{t}$ candidate in the $e\mu$ channel.

Object reconstruction

- Electrons must have p_T > 18 GeV and |η| < 2.47, pass Medium identification and be isolated.
- **Muons** must have $p_{\rm T} > 18 \, {\rm GeV}$ and $|\eta| < 2.5$, pass Medium requirements and be isolated.
- Jets are required to have $p_{\rm T} > 20$ GeV and $|\eta| < 2.5$.
- **b-jets** are tagged using the DL1r algorithm (EPJ C 79 (2019) 970).

Fake-lepton background is estimated from data using the matrix-method technique.

Lepton *p*_T

Jet p_T

JHEP 11 (2024) 101

 $t\bar{t}$ production in Pb+Pb collisions

Signal regions

- $H_{\rm T}^{\ell,j}$ is the scalar sum of lepton and jet $p_{\rm T}$.
- Six signal regions:
 - 1/1*b e*+jets,
 - 1l2bincl e+jets,
 - $1\ell 1b \mu$ +jets,
 - $1\ell 2b$ incl μ +jets,
 - 2ℓ1*b*,
 - 2/2*b*incl.

Systematic uncertainties

The main systematic uncertainties: jet energy scale and signal modelling.

The total systematic uncertainty amounts to 8%.

Source	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$		
	unc. up [%]	unc. down [%]	
Jet energy scale	+4.6	-4.1	
tt generator	+4.5	-4.0	
Fake-lepton background	+3.1	-2.8	
Background	+3.1	-2.6	
Luminosity	+2.8	-2.5	
Muon uncertainties	+2.3	-2.0	
<i>W</i> +jets	+2.2	-2.0	
b-tagging	+2.1	-1.9	
Electron uncertainties	+1.8	-1.5	
MC statistical uncertainties	+1.1	-1.0	
Jet energy resolution	+0.4	-0.4	
tt PDF	+0.1	-0.1	
Systematic uncertainty	+8.3	-7.6	

Cross-section measurement

The $t\bar{t}$ production cross section is measured to be $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} \stackrel{+4.8}{-4.4} \text{ (syst.) nb.}$

- The total uncertainty amounts to 9%, which makes it the most precise tt measurement in HI collisions.
- The result is consistent with the CMS measurement and scaled cross section in *pp* collisions, extrapolated to $\sqrt{s} = 8.16$ TeV.

* The nuclear modification factor is measured to be $R_{pA} = 1.090 \pm 0.039 \text{ (stat.)} {}^{+0.094}_{-0.087} \text{ (syst.)}.$

Good agreement with MCFM NNLO calculations (PRD 94, 093009 (2016)) based on four nPDF sets.

Observation of $t\overline{t}$ production in the electron–muon channel in Pb+Pb collisions

 $t\bar{t}$ production in Pb+Pb collisions

Pb+Pb data in ATLAS

- Pb+Pb data at $\sqrt{s_{\text{NN}}} = 5.02$ TeV collected in Run 2 (2015, 2018) by ATLAS.
- The luminosity of 1.9 nb⁻¹: 0.49 nb⁻¹ (2015) 1.4 nb⁻¹ (2018).
- Final luminosity calibration with a relative uncertainty of 1.5%.

Event display of a Pb+Pb collision containing a $t\bar{t}$ candidate in the $e\mu$ channel.

Object reconstruction

- Electrons must have p_T > 18 GeV and |η| < 2.47, pass Loose identification and be isolated.
- **Muons** must have $p_T > 15$ GeV and $|\eta| < 2.5$, pass Loose requirements and be isolated.
- Jets are required to have $p_{\rm T} > 35$ GeV and $|\eta| < 2.5$.
- No b-tagging requirements are imposed on jets.

 Fake-lepton background is estimated from data using the ABCD method.

Events

Data / Pred.

 $t\bar{t}$ production in Pb+Pb collisions

Signal region 2

Signal regions

Two signal regions are defined using invariant mass m_{eµ}:

- SR1: $p_{\mathrm{T}}^{e\mu} >$ 40 GeV,
- **SR2:** $p_{\rm T}^{e_{\mu}} \le 40$ GeV.

Signal strength definition: $\mu_{t\bar{t}} = \sigma_{t\bar{t}}^{\text{measured}} / \sigma_{t\bar{t}}^{\text{theory}}.$

 μ_{tt} is determined by a profile-likelihood fit to m_{eµ} data distributions.

Signal region 1

Events Data Data ATLAS 22 F 16 Pb+Pb (s_{NN} = 5.02 TeV, 1.9 nb⁻¹ Pb+Pb VsNN = 5.02 TeV. 1.9 nb⁻¹ tī tī Centrality 0-80% Centrality 0-80% tW tW SR₁ SR₂ 18F Z+jets, VV Z+jets, VV Post-Fit Post-Fit Fake lepton Fake lepton 12 16F Uncertainty **W**Uncertaintv 14 10 12 10 Data / Pred. 1.25 1.25 0.75 0.7 0.5 0.5 50 250 300 50 200 100 150 200 100 150 250 300 m_{eu} [GeV] m_{eu} [GeV]

Systematic uncertainties

- Main systematic uncertainties: signal modelling and jet reconstruction.
- The total systematic uncertainty of 18%.

Source	Δa unc. up [%]	$\sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ unc. down [%]
Signal modeling	+14.4	-8.7
Jet	+7.4	-5.3
Fake-lepton	+6.6	-6.7
Electron	+3.6	-2.3
Muon	+3.4	-2.2
Luminosity	+2.3	-1.6
Background modeling	+2.2	-2.2
MC statistics	+1.9	-1.6
Systematic uncertainty	+18.4	-13.2

Cross-section measurement

The top-quark pair production cross-section is measured to be $\sigma_{t\bar{t}} = 3.6 \stackrel{+1.0}{_{-0.9}} (\text{stat.}) \stackrel{+0.8}{_{-0.5}} (\text{syst.}) \ \mu \text{b.}$

- The total uncertainty of **31%** is dominated by the statistical component of 26%.
- The first observation of $t\bar{t}$ production in Pb+Pb collisions with **5.0** σ significance.
- Good agreement with MCFM NNLO calculations (PRD 94, 093009 (2016)) based on four nPDF sets.

Summary

1 Observation of *tt* production in *p*+Pb collisions

- The first *t* observation using the dilepton channel in *p*+Pb collisions at the LHC.
- The $t\bar{t}$ cross section is measured to be $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} \overset{+4.8}{-4.4} \text{ (syst.) nb.}$
- The most precise tt cross-section measurement in HI collisions at the LHC.

2 Observation of $t\bar{t}$ production in Pb+Pb collisions

- The first observation of *t*t production in Pb+Pb collisions at the LHC.
- The $t\bar{t}$ cross section is measured to be $\sigma_{t\bar{t}} = 3.6^{+1.0}_{-0.9}$ (stat.) $^{+0.8}_{-0.5}$ (syst.) μ b.
- The observed significance in the *eµ* channel amounts to 5.0 σ.

Acknowledgements

NATIONAL SCIENCE CENTRE

Research project partly supported by the National Science Centre of Poland under grants UMO-2020/37/B/ST2/01043 and UMO-2024/53/N/ST2/00869, by program "Excellence initiative – research university" project no 9722 for the AGH University of Krakow and by PL-Grid Infrastructure.

Backup slides

Event selection in *p*+Pb collisions

e+jets

- 1 electron,
- 0 muons,
- at least 4 jets.

ℓ+jets

μ +jets

- 1 muon,
- 0 electrons,
- at least 4 jets.

Background

Single top,

- ✤ W+jets,
 - *W*+*b*,
 - *W*+*c*,
 - W+light,
- ✤ Z+jets,
 - Z+b,
 - *Z*+*c*,
 - Z+light,
- Diboson,
- Fake lepton.

ee

- 2 electrons,
- 0 muons,
- opposite sign leptons,
- $m_{\ell\ell} > 45 \text{ GeV}$ and $m_{\ell\ell} \notin (80-100) \text{ GeV}$,
- at least 2 jets.

Dilepton µµ

- 2 muons,
- 0 electrons,
- opposite sign leptons,
- *m*_{ℓℓ} > 45 GeV and *m*_{ℓℓ} ∉ (80−100) GeV,
- at least 2 jets.

$oldsymbol{ heta}\mu$

- 1 electron,
- 1 muon,
- opposite sign leptons,
- *m*_{ℓℓ} > 15 GeV,
- at least 2 jets.

Event selection

Dilepton

- 0-80% collision centrality
- primary vertex

ee (control region)

- 2 electrons,
- 0 muons,
- opposite sign leptons,
- *m_{ee}* ∈ (66-116) GeV,
- no jet requirement.

$\mu\mu$ (control region)

- 2 muons,
- 0 electrons,
- opposite sign leptons,
- $m_{\mu\mu} \in$ (66-116) GeV,
- no jet requirement.

$e\mu$ (signal region)

- 1 electron,
- 1 muon,
- opposite sign leptons,
- $m_{e\mu}>$ 30 GeV,
- at least 2 jets.

Background

- Single top (*tW*),
- Diboson (VV),
- ✤ Z+jets,
 - Z
 ightarrow ee,
 - $Z \rightarrow \mu \mu$,
 - $Z \rightarrow \tau \tau$,
- Fake lepton.

$t\bar{t}$ in *p*+Pb collisions by CMS

- First observation of *t* production in 2016
 p+Pb collisions by CMS.
- Total integrated luminosity of 174 nb⁻¹.
- Measurement done in the ℓ +jets ($\ell = e, \mu$) channel of $t\bar{t}$ decay.
- Combined cross-section: $\sigma_{t\bar{t}} = 45 \pm 8$ nb.
- Total relative uncertainty of 18%.

$t\bar{t}$ in Pb+Pb collisions by CMS

- First evidence of *t* production in 2018 Pb+Pb collisions by CMS.
- Total integrated luminosity of 1.7 nb⁻¹.
- Measurement done in the **dilepton** $(ee, \mu\mu, e\mu)$ channel of $t\bar{t}$ decay.
- Observed significance for two methods:
 3.8 σ (dilepton-only),
 4.0 σ (dilepton + *b*-jets).
- Measured cross-sections: $\sigma_{t\bar{t}} = 2.54 \stackrel{+0.84}{_{-0.74}} \mu b$ (dilepton-only), $\sigma_{t\bar{t}} = 2.03 \stackrel{+0.71}{_{-0.64}} \mu b$ (dilepton + *b*-jets).
- Available back then PDF (CT14) and nPDF (EPPS16) used.

Patrycja Potępa