Antibaryon production in pp interactions at s^{1/2}≈10 GeV: statistical hadronization and p+p-bar scaling?

Tomasz Matulewicz Faculty of Physics, University of Warsaw

XVII Polish Workshop on Relativistic Heavy-Ion Collisions December 15th, 2024

Antibaryon vs Baryon production

- $p + p \rightarrow \overline{B} + X \qquad p + p \rightarrow \overline{B} + B + p + p$ $p + p \rightarrow B + X \qquad p + p \rightarrow B + N + M$
- Significant difference in threshold energy
- Negligible at SPS energies (5-20 GeV)???
- Imprint on fluctuations?
- State-of-the-art calculations of pp->X multiplicities in PHSD and PYTHIA (2020)

$$p + p \rightarrow \overline{\Lambda} + \Lambda + p + p$$
$$p + p \rightarrow \Lambda + p + K^{+}$$
$$(\sqrt{s}) = m_{\Lambda} + m_{p} - m_{K} = 1.6 GeV$$

Eur. Phys. J. A (2020) 56:223 https://doi.org/10.1140/epja/s10050-020-00232-7 The European Physical Journal A

Review

Hadron production in elementary nucleon–nucleon reactions from low to ultra-relativistic energies

V. Kireyeu¹, I. Grishmanovskii², V. Kolesnikov¹, V. Voronyuk¹, E. Bratkovskaya^{2,3,a}

Applicability of PHSD extended from $\sqrt{s_{BB}}$ =10 GeV down to $\sqrt{s_{BB}}$ =2.65 GeV ("PHSD tune")

(e)

<Multiplicity>

 10^{0}

 10^{-1}

10⁻²

PHSD, p+p

PHSD, p+n PHSD, n+n

PYTHIA, p+p

PYTHIA, p+n

PYTHIA, n+n

 \overline{p}

Description of particle yields within GCE+SC free volume for strangeness

published:

 $\chi^2/\nu = 1.9$

 π^+

 $T = 163.8 \pm 4.4 \text{ MeV}$

 $\mu_{_{\rm B}}$ = 285.5 \pm 8.1 MeV

 $R = 1.41 \pm 0.11 \text{ fm}$

 $R_{\rm C} = 2.18 \pm 0.16$ fm

 $\gamma_{_{\rm S}}=0.386\pm0.013$

π

Multiplicity

10⁻¹

10⁻² a

J.Phys. G 48, 085006 (2021) first attempt Acta Phys. Pol. B54, 12-A1 (2023) extension to 3 energies (December 2023)

 K_{s}^{0}

K

 K^{+}

р

Relative accuracy of pp HRG ~20%

 Relative difference between experimental yields Y_{exp} and the results of hadronic thermalization Y_{stat} (36 multiplicities, 3 energies)

$$\left\langle \frac{Y_{\text{stat}} - Y_{\text{exp}}}{Y_{\text{exp}}} \right\rangle = (-4 \pm 17)\%$$

- Precision of statistical HRG description of experimental yields ~20%. Working tool with limited prediction power only?? Some physics??
- Expected yields for many particles published (10.5506/APhysPolB.54.12-A1)
- Accuracy of predictions 20% ???

Antibaryon/baryon ratio

NA61/SHINE, Eur. Phys. J. C (2020) 80:833

 p_T and y = 0 in rapidity. The small value of the ratio of mean multiplicities $\langle \overline{\Xi}^+ \rangle / \langle \Xi^- \rangle = 0.24 \pm 0.01 \pm 0.05$ emphasizes the strong suppression of $\overline{\Xi}^+$ production.

0.25 (HRG)

p+p-bar scaling applied to other antibaryons

 experimental results (NA61/SHINE)
| HRG statistical model predictions (20% precision assumed)

Red curve - fit to antiproton production

Energy scale accounts for different threshold energy.

$$\sqrt{s_{free}} = \sqrt{s} - 2m_p - 2m_B$$

 $M_{\bar{B}} \sim \left(\sqrt{S_{free}}\right)^{\alpha}$

Q

 α =1.81±0.09

Backup slides

Antiproton multiplicities (no errors!) from M.Antinucci et al., Lett. Nuovo Cim. 6, 121 (1973)

S (GeV ²)	S ^{1/2} (GeV)	Antiproton multiplicity
37.8	6.1	0.0023
46.8	6.8	0.0040
67.2	8.2	0.005
81	9.0	0.008
100	10	0.011
133	11.5	0.015
485	22	0.061
960	31	0.11
2025	45	0.15
2810	53	0.16

	NA61@SPS		NA49@SPS	STAR@RHIC			
					NA61@SPS		
	Energy s ^{1/2} (GeV)						
Particle	6.3	7.7	8.8	12.3	17.3	200	
π ⁰						•	
π^+						•	•
π^-						•	
р						•	
p-bar						•	•
n					•		•
φ			•	•		•	
K +						•	
K -						•	•
κ ^ο s		•	•	•	•	•	•
K(892) ⁰			•	•	•		
K(892) ⁰ -bar					•		
Λ			•		•	•	
Λ -bar						•	
Λ(1520)					•		
Ξ-					•	•	
Ξ+					•	•	
Ξ(1530) ⁰					•		
Ξ(1530) ⁰ -bar					•		
Ω						•	
Ω-bar 4.09.202	4					T Matulewi	cz 20

proton+proton

- NA61/SHINE Eur. Phys. J. C (2017) 77:671 etc *K*⁰_s@80GeV/c, 40GeV/c, 31GeV/c new Eur. Phys. J. C 84, 820 (2024)
- **NA49**
- merged NA49&NA61/SHINE •

(M. Schmelling, Phys. Scr.51,676 (1995)) J. Phys. G 48 (2021) 085004

- PHENIX
- **STAR**

Phys.Rev.Lett.91:241803,2003 Phys. Rev. C 75, 064901 (2007) Phys. Lett. 612B, 181 (2005)

Results at $s^{1/2}=17.3$ GeV are complete

	Initial	Reconstructed
Charge	2	1.86 ± 0.22
Baryon number	2	1.92 ± 0.11
Strangeness	0	-0.014 ± 0.023

- Strangeness undersaturation factor $\gamma_{s} \cong 0.4$
- Temperature (&baryochemical potential) similar to previous analyses
- Decrease of canonical volume with increasing energy
- R_c above R !

This work, R

This work, R

VV et al. (2016)

FB et al. (1997)

20

√s [GeV]

10

R [fm]

VB et al. (2018) CE

VB et al. (2018) GC

φo

- Acta Phys. Pol. B54, 12-A1 (2023)
- Both strangeness suppression factor <u>and</u> radius have to be used

Could $R_C > R$? Hints not only from femtoscopy

pp collisions @ Vs = 27.4 GeV

M. Aguilar-Benitez et al. (NA27 Collaboration), Z. Phys. C54, 21 (1992)

For $\pi^{\pm}\pi^{\pm}$ pairs, $R = 1.71 \pm 0.04$ fm For K[±]K[±] pairs, $R = 1.87 \pm 0.33$ fm

pp collisions @ **Vs = 63 GeV**

T. Åkesson et al. (AFS Collaboration), PL 155B, 128 (1985)

PHYSICAL REVIEW C **103**, 014904 (2021) J. Cleymans, P.M. Lo, K. Redlich, N. Sharma

The resulting yields (the SCE model fit to ALICE data) exhibit much better agreement with data by decreasing strangeness suppression at lower multiplicities due to **larger value of V_c than V_A**.

Femtoscopic results inconclusive

→ more precise determination of the HBT radius of kaon pairs from pp interactions welcome!