Fluctuations and correlations of baryonic chiral partners

References:

- [1] <u>M. Marczenko</u>, K Redlich, C. Sasaki PRD 107, (2023) 5, 054046
- [2] V. Koch, <u>M. Marczenko</u>, K Redlich, C. Sasaki, PRD 109 (2024) 1, 014033
- [3] <u>M. Marczenko</u>, PRD 110 (2024) 1, 014018
- [4] M. Marczenko, K Redlich, C. Sasaki arXiv:2410.21746 (2024)

14.12,2024 - XVII Polish Workshop on RHIC: Phase diagram and EoS of strongly interacting matter

- Michał Marczenko
- University of Wrocław

Lattice QCD vs Hadron Resonance Gas

$$P^{\text{HRG}} = \sum_{i \in \text{had}} P^{\text{id}} \left(T, \mu_i; m_i \right)$$

Excellent agreement with LQCD EoS up to $\simeq T_c$

Taylor expansion of LQCD EoS

$$\frac{P}{T^4} = \sum_{k=0}^{\infty} \left(\frac{\mu_B}{T}\right)^k \frac{\chi_k^B}{k!}, \text{ where } \chi_k^B = \frac{\partial^k P/T^4}{\partial \left(\mu_B/T\right)}$$

Kurtosis: $\chi_4^B / \chi_2^B \sim B^2$

Parity Doubling in Lattice QCD Aarts et al, 2017, 2019

Imprint of chiral symmetry restoration in the baryonic sector

- N^+ nucleon stays nearly unchanged
- N^- chiral partner drops mass towards T_c
- Chiral partners N^{\pm} degenerate at T_{c}
- Chiral parents stay massive
- Seen for octet and decouplet of baryons

LQCD results still obtained with heavy m_{π} far from continuum limit

Parity Doublet Model a'la DeTar, Kunihiro 1989

• SU(2) chiral transformation of 2 nucleons \rightarrow how to assign 2 independent rotation to them?

04/11

For multiplicity $N_R = N_+ + N_-$

Second-order fluctuations of the net-baryon number:

 $\langle \delta N_R \delta N_R \rangle = \langle (\delta N_{\perp})^2 \rangle + \langle (\delta N_{\perp})^2 \rangle + 2 \langle \delta N_{\perp} \delta N_{\perp} \rangle$

 $\chi_{2}^{B} = \chi_{2}^{++} + \chi_{2}^{--} + 2\chi_{2}^{+-}$

- What are the individual contributions of parity partners N_+ and N_- ?
- What is the strength and sign of the correlation χ_2^{+-} ?
- Is net-proton a good proxy for net-baryon fluctuations? $\chi_2^B = \chi_2^{++} + \chi_2^{--} + 2\chi_2^{+-}$

Net-baryon number: $\langle N_R \rangle = \langle N_+ \rangle + \langle N_- \rangle$

Fluctuations at liquid-gas and chiral transitions

Liquid-Gas dominated by χ₂⁺⁺
Chiral dominated by χ₂⁺⁺ and χ₂⁻⁻
Peaks diminished by negative χ₂⁺⁻

weak signal in χ_2^B

Idealized behavior of the χ_2^{+-} correlator \longrightarrow no repulsive forces

Correlations of between different baryon species e.g., $N^{\pm}\Delta^{\mp}$, behave similarly Change of the sign of χ_2^{+-} linked to the chiral phase boundary interesting quantity to calculate in LQCD

Fluctuations dominated by positive parity

Net-baryon ~ Net-nucleon

$R_{2,1} = \chi_2/\chi_1$ along phase boundary

Chiral CP

Presence of chiral partners + correlations

Net-baryon ≪ Net-nucleon

Higher-Order Fluctuations of Parity Partners

The net-proton fluctuations do not necessarily reflect the net-baryon fluctuations at the chiral phase boundary

Non-trivial correlations between baryonic chiral partners

χ_2^{proton} may not reflect χ_2^B at the chiral or LG phase boundary

Summary

Interesting to calculate χ_2^{+-} in other non-perturbative approaches

Thank You

Imprint of chiral symmetry restoration in the baryonic sector Aarts et al, 2019

Clear evidence for partial restoration of chiral symmetry in the strange baryon sector

Cumulants vs Susceptibilities

$$C_n \equiv VT^3 \frac{d^n P/T^4}{d(\mu_B/T)^n} \bigg|_T \qquad \qquad \chi_n^B \equiv \frac{d^2}{d(\mu_B/T)^n} \bigg|_T$$

Increasing T

peaks get closer

Chiral Criticality in Parity Doubling Model

 M_+ has a minimum at $\sigma_{\min} = 2$

 $a \sqrt{a^2 - b^2}$

• Position of σ_{\min} closely related to the chiral phase transition

 $\chi_2^B = \chi_2^{++} + \dots \simeq \chi_2^p + \chi_2^n + \chi_2^{pn} \neq 2\chi_2^p$

Influence of the strength of the repulsive interactions

- Clear suppression of fluctuations with increasing repulsive vector interactions
- Increase of fluctuations due to in-medium chiral masses is reduced via negative correlations
- With particular repulsion strength, fluctuations are pushed down to HRG results with vacuum masses

