

ALICE Forward Calorimeter (FoCal) upgrade

Jacek Otwinowski (IFJ PAN Krakow)

(on behalf of the ALICE Collaboration)

Outline

FoCal purpose
Detector design
Expected performance

and DIS measu. central LHC 1002

FoCal upgrade officially approved as CERN project in April 2024

FoCal Letter of Intent: <u>CERN-LHCC-2020-009</u> Physics of the ALICE FoCal upgrade: <u>ALICE-PUBLIC-2023-001</u>, <u>ALICE-PUBLIC-2023-004</u> Technical Design Report: <u>CERN-LHCC-2024-004</u> Performance of the FoCal prototype: M.Aehle et al. <u>JINST 19 P07006 2024</u>

Strong WUT and IFJ PAN involvement

ALICE Forward Calorimeter (FoCal)

FoCal calorimeter for LHC Run 4 measurements (2029-2032)

CERN-LHCC-2024-004

FoCal Purpose

FoCal unique capabilities

Direct γ , neutral hadrons, vector mesons and jets measurements in pp, p-Pb and UPC collisions at the LHC

p_{_} (GeV/c)

ALI-SIMUL-564283

14-Dec-2024

Jacek Otwinowski

B. Ducloué, T. Lappi, H. Mäntysaari Phys. Rev. D 97, 054023 (2018)

M. Abdullah Al-Mashad, A. van Hameren, H. Kakkad, P. Kotko, K. Kutak, P. van Mechelen S. Sapeta arXiv.2210.06613

d) fragmen

small k_T

з

 $\Delta \varphi$

J/ ψ production in p-Pb and Pb-Pb UPC

A. Bylinkin, J. Nystrand, D. Tapia Takaki <u>arXiv:2211.16107</u>

Initial vs final state momentum anisotropies

Initial vs final state momentum anisotropies in small colliding systems \rightarrow origin of long-range correlations?

ATLAS-CONF-2017-006

B. Schenke, S. Schlichting, and P. Singh Phys. Rev. D105 (2022) 094023

ALICE-PUBLIC-2023-001

Detector design

FoCal-E design

130

1002

FoCal-H design

- Cu capillary tubes + scintillation fibers
- \Box 1 x 1 cm² towers with SIPM readout (~10000 ch.)
- **D** Thickness ~ 1m (~5 x λ_{int})

Jacek Otwinowski

03

OM

70

1002

WUT

Expected performance

Position and energy resolution

Good position resolution required for direct γ and π^0 measurements

\Box Reasonably good energy resolution for γ isolation and jet reconstruction

ALICE-PUBLIC-2023-004

FoCal-E longitudinal shower profile

- Good agreement between data and simulations
- \Box Parametrized with Γ function

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = Q_E \beta \, \frac{(\beta t)^{\alpha - 1} e^{-\beta t}}{\Gamma(\alpha)} + Q_0$$

$$\Gamma(\alpha) = \int_0^\infty e^{-z} z^{\alpha-1} \, dz$$

M.Aehle et al. JINST 19 P07006 2024

FoCal-E pixel transverse profiles

Good agreement between data and simulations

M.Aehle et al. JINST 19 P07006 2024

90

$R_{\rm pPb}$ of prompt γ in simulations

FoCal pseudo-data for constraining nPDFs

- R_{pPb} obtained with INCNLO including stat. and syst. uncertainties
- No correlation between syst. uncertainties in pp and p-Pb collisions
- Comparison to nNNPDFs calculations including FoCal pseudo-data

ALICE-PUBLIC-2023-004

P. Aurenche et al. Eur. Phys. J. C 9 (1999)107

Summary and Outlook

- □ FoCal upgrade officially approved as CERN project
- FoCal has unique capabilities to study low-x physics
- □ FoCal performance in test measurements as expected
- □ FoCal R&D is still ongoing (mechanics, cooling system and FEE)
- Detector installation at CERN in 2028 for Run 4 data taking
- □ Discussions about FoCal impact on ALICE 3 for Run 5 6
 - Precision measurements over 10 units in pseudorapidity

FoCal Letter of Intent: <u>CERN-LHCC-2020-009</u> Physics of the ALICE FoCal upgrade: <u>ALICE-PUBLIC-2023-001</u>, <u>ALICE-PUBLIC-2023-004</u> Technical Design Report: <u>CERN-LHCC-2024-004</u> Performance of the FoCal prototype: M.Aehle et al. <u>JINST 19 P07006 2024</u>

ALICE 3 Letter of Intent: CERN-LHCC-2022-009

Strong WLIT and IFJ PAN involvement

Backup

Direct photons

Explore QCD matter at the smallest Bjorken-x

- □ Partonic structure at small *x* and gluon saturation
- Non-linear QCD evolution
- Transition to Color Glass Condensate (CGC)

Nuclear PDFs

State-of-the-art analyses including electroweak-boson, jet, light-hadron, and heavy-flavor observables

M. Kalssen & H Pakkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024)1-41

Fermi

motion

EMC-V effect

10

10-1

x

14-Dec-2024

Jacek Otwinowski

22

x

Direct γ and π^0 measurements

Nuclear modification factors $R_{pPb} = Y_{pA} / N_{bin} Y_{pp}$ calculated in CGC framework with BK equation

 \rightarrow strong suppression due to gluon saturation in Pb nuclei

B. Ducloué, T. Lappi, H. Mäntysaari Phys. Rev. D 97, 054023 (2018)

γ -jet and jet-jet $\Delta \phi$ correlation

 $\Delta \phi$ dependence of R_{pPb} at forward rapidity in ITMD framework

\rightarrow excellent probe of saturation

M. Abdullah Al-Mashad, A. van Hameren, H. Kakkad, **P. Kotko**, K. Kutak, P. van Mechelen S. Sapeta <u>arXiv.2210.06613</u>

 $\Delta \phi$

Jet quenching in A-A collisions at large rapidity

ATLAS, <u>JHEP09(2015)050</u> Jacek Otwinowski

Isolated prompt γ reconstruction

\Box Efficiency above 80% for $p_T > 5$ GeV/c in pp and p-Pb collisions

- Statistical uncertainties projections based on JETPHOX NLO and expected luminosity in LHC Run 4
- Systematic uncertainties estimation with <u>INCNLO</u> including signal and background sources

P. Aurenche et al. <u>Eur. Phys. J. C 9 (1999)107</u>

ALICE-PUBLIC-2023-004

Jet reconstruction performance

Jet energy scale (JES) and resolution (JER)

- □ EM showers (π^{0}) miss less jet energy than hadronic showers (π^{+})
- Non-Gaussian tails at small energy jets

Isolated/direct γ and π^0 correlations

Performance of the FoCal prototype

Measurements performed in 2021 - 2023 with CERN PS and SPS with electron and hadron beams

ALI-PERF-569144

M.Aehle et al. <u>JINST 19 P07006 2024</u>

FoCal-E pad layer linearity and resolution

Good agreement between data and simulations

M.Aehle et al. JINST 19 P07006 2024

Jacek Otwinowski

FoCal-H linearity and resolution

FoCal-E pixel transverse profiles

Good agreement between data and simulations

ALICE FoCal-E Pixel

287 GeV

ALICE FoCal-E Pixel

287 GeV electrons

Jet reconstruction performance

Jet energy scale (JES) and resolution (JER)

- □ Jet reconstruction bias < 25%
- Non-Gaussian tails at small energy jets

ALICE-PUBLIC-2023-004

FoCal-E readout

Si Pixel Layers

- 3888 ALPIDE chips (ADC)
- Data rate (2 pixel layers): 65 320 Gbps

G. A. Rinella, ALICE Coll., Nucl. Instrum. Meth. A845 (2017) 583

CERN-LHCC-2024-004

Si Pad Layers

1944 HGCROC chips (ToA, ADC and ToT)
 Data rate (18 pad layers): 110 – 170 Gbps

F. Bouyjou et al. <u>JINST 17 (2022) C03015</u>

14-Dec-2024

FoCal-H readout

- H2GCROC chips for SiPM readout with programmable gain (ToA, ADC and ToT)
- Data rate: 13 21 Gbps

F. Bouyjou et al. <u>JINST 17 (2022) C03015</u> CERN-LHCC-2024-004