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High energy heavy-ion(HI) collision: “The Little Bang”

Shen, Heinz, arXiv:1507.01558

Boiling water : 102 K Core of the Sun : 107 K QGP ∼ 212 MeV ≡ 1012 K !!
Gardim et al. Nature Physics 16 , 615–619
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PHOBOS arXiv:0711.3724 U. Heinz, arXiv:0810.5529 BNL: RHIC
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Modeling the anisotropy : Harmonic flow

Momentum anisotropy as fourier expansion of flow harmonics

dN
dpT dφ ∝ 1 + 2v2 cos [2(φ−Ψ2)] + 3v3 cos [3(φ−Ψ3)] + . . .

elliptic flow triangular flow
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Fluctuations in HI collision

Event-by-event fluctuation of initial
state.

All final state collective observables
,Nch, [pT ], Vn fluctuates
event-by-event.

Could be a combination of classical
or geometrical (b fluctuation),
quantum or intrinsic (at fixed b)
and statistical fluctuation.

Lumpy structure of the initial density
Schenke, Tribedy, Venugopalan arXiv: 1206.6805
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Probing flow-fluctuation : Factorization breaking coefficients
P. Bozek, RS PRC 105, 034904 (2022)

I Flow vector, Vn = |Vn| e i nΨn

|Vn| → Flow magnitude & Ψn → Flow angle
I Event by event(ebe) flow vector(Vn)

fluctuation → ebe flow magnitude(|Vn|)
fluctuation + ebe flow angle(Ψn) fluctuation

lumpy structure of the initial density

Schenke, Tribedy, Venugopalan arXiv: 1206.6805

(flow vector)2-(flow vector)2 decor.
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Fluctuations of mean transverse momentum per particle ([pT ])
RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

Puzzling behavior in ATLAS data : steep
decrease over a narrow range of Nch

Hydro simulation at fixed b (=0) : significant
fluctuation of Nch, modest fluctuation of [pT ]
and Strong correlation between them

The distribution can be modeled by 2D
correlated Gaussian : P(Nch, δpT )
=

∫
P(Nch, δpT |b)P(b)db

Var( [pT ]|Nch) is the squared width of
P(δpT |Nch) = P(Nch,δpT )

P(Nch) our model naturally
reproduces the steep fall in the ATLAS data
very well !

Below the knee, half of the contribution is from
impact parameter fluctuation and other half is
due to intrinsic fluctuations

The contribution of b-fluctuation gradually
disappears around the knee !
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Table 374 in https://www.hepdata.net/record/ins2075412
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Probing initial state correlation : Correlation between [pT ] and v2
n

P. Bozek, PRC 93, 044908 (2016), P. Bozek, RS, PRC 104, 014905 (2021)

Pearson’s correlation coefficient between
[pT ] and v 2

n (Bozek’s correlator) :

ρ([pT ], v 2
n ) = 〈[pT ] v 2

n 〉 − 〈[pT ]〉〈v 2
n 〉√

(〈[pT ]2〉 − 〈[pT ]〉2)(〈(v 2
n )2〉 − 〈v 2

n 〉2)

〈. . . 〉 =⇒ average over events
To map initial state of collision, linear
predictor for [pT ] and vn :

[pT ] = f (R, S, ε2
n) and v 2

n = f (ε2
n,R,S)

- R = rms radius of the overlap area
- S = total initial entropy
- εn = initial eccentricity
ρ([pT ], v 2

2 ) : model result qualitatively
describe the data, change of sign occur at more
peripheral collision.
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Novel probe of collectivity : [pT ] - ‘Spectra’ correlation (v0(pT ))
T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

I First introduced by Teaney et al., similar to
anisotropic flow (long range correlation, mass
ordering at low pT ).

I Advantage : but does not depend on the
direction (φ) of outgoing particles

I Definition :

v0(pT ) ≡ 〈δN(pT )δpT 〉
N0(pT )σpT

and v0 ≡
σpT

〈pT 〉
,

where N(pT )− N0(pT ) = δN(pT ) and
[pT ]− 〈pT 〉 = δpT

I The scaled quantity v0(pT )/v0 is independent
of centrality (same observed for vn(pT )/vn by
ATLAS !).

I Can constrain medium properties. Difference :
sensitive to bulk viscosity only.
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Novel probe of collectivity : [pT ] - ‘Spectra’ correlation (v0(pT ))
T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

v0(pT )/v0 can be used to capture
pT -acceptance effect on observables through
correction factor CA :

CA ≡
1

N0A〈pT 〉A

∫
pT ∈A

(pT−〈pT 〉A) v0(pT )
v0

N0(pT )

Then, one can relate :

v0,A = CA × v0

=⇒
σpT ,A

〈pT 〉A
= CA ×

σpT

〈pT 〉
.
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Moving towards smaller system : multiplicity fluctuation in p+Pb
RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

ATLAS presents multiplicity (dNch/dη) as a
function of η and ET (centrality estimator) −→
pseudorapidity dependent correlation between
dNch/dη and ET −→ long-range correlation
−→ can be modeled by a correlated gamma
distribution with two parameters r ∗ σNch and
Nch

Impact parameter fluctuation plays negligible
role in central collisions (up to 10 %) −→
dominated by quantum fluctuations !
By fitting the two most centralities, we make
robust predictions on multiplicities for more
central bins.
Repeating the same analysis using different
centrality classifier covering a different
rapidity window and using the fit
parameters, direct information on rapidity
decorrelation (r) can be obtained.
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Moving towards smaller system : multiplicity fluctuation in p+Pb
RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

ATLAS presents multiplicity (dNch/dη) as a
function of η and ET (centrality estimator) −→
pseudorapidity dependent correlation between
dNch/dη and ET −→ long-range correlation
−→ can be modeled by a correlated gamma
distribution with two parameters r ∗ σNch and
Nch
Impact parameter fluctuation plays negligible
role in central collisions (up to 10 %) −→
dominated by quantum fluctuations !

By fitting the two most centralities, we make
robust predictions on multiplicities for more
central bins.
Repeating the same analysis using different
centrality classifier covering a different
rapidity window and using the fit
parameters, direct information on rapidity
decorrelation (r) can be obtained.
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Outlook

Third decade of collectivity −→ first measurement in 2001 !

Proposing novel probes −→ better understanding of the QGP
medium properties and dynamics

Moving towards smaller systems :
1 Collectivity in O+O collision, pioneered by Sivert and Noronha-Hostler

arXiv:1901.01319, Rybczynski and Broniowski arXiv: 1910.09489 and recent surging interests,
arXiv: 2103.03345, 2308.06078, 2404.08385, 2404.09780, 2407.15065

2 How does flow generate in small systems ? Can we describe collectivity
in Pb+Pb, p+Pb and p+p system in a consistent way ? Is QGP
formed in all of these systems ? Christiansen and Mechelen, arXiv:2412.02672, ALICE

Collaboration, arXiv:2411.09323

3 Can we apply hydrodynamics in those systems ?
4 Machine learning in HI collision...... Mallik et al., arXiv:2203.01246, Hirvonen, Eskola,

Niemi, arXiv: 2303.04517, Goswami et al. arXiv: 2404.09839

Thank you !
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