Probing the hottest droplet of fluid through correlations and fluctuations

Rupam Samanta

Institute of Nuclear Physics, Polish Academy of Science

Warsaw University of Technology, Poland, Dec 15, 2024

High energy heavy-ion(HI) collision: "The Little Bang"

Shen, Heinz, arXiv:1507.01558

Boiling water : 10^2 K

Core of the Sun : 10^7 K

 $\label{eq:GP} \begin{array}{c} \text{QGP} \sim 212 \ \text{MeV} \equiv 10^{12} \ \text{K} \ !! \\ \text{Gardim et al. Nature Physics 16 , 615-619} \end{array}$

R. Samanta (IFJ, PAN)

Correlations and fluctuations

Dec 15, 2024 2 / 11

Fluctuations in HI collision

• Event-by-event fluctuation of initial state.

Lumpy structure of the initial density Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Fluctuations in HI collision

- Event-by-event fluctuation of initial state.
- All final state collective observables , N_{ch}, [p_T], V_n fluctuates event-by-event.

Lumpy structure of the initial density Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Fluctuations in HI collision

- Event-by-event fluctuation of initial state.
- All final state collective observables ,N_{ch}, [p_T], V_n fluctuates event-by-event.
- Could be a combination of classical or geometrical (*b* fluctuation), quantum or intrinsic (at fixed *b*) and statistical fluctuation.

Lumpy structure of the initial density Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Probing flow-fluctuation : Factorization breaking coefficients

P. Bozek, RS PRC 105, 034904 (2022)

lumpy structure of the initial density

- ► Flow vector, $V_n = |V_n| e^{i n \Psi_n}$ $|V_n| \rightarrow$ Flow magnitude & $\Psi_n \rightarrow$ Flow angle
- ► Event by event(ebe) flow vector(V_n) fluctuation \rightarrow ebe flow magnitude($|V_n|$) fluctuation + ebe flow angle(Ψ_n) fluctuation

Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Dec 15, 2024

5/11

R. Samanta (IFJ, PAN)

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

• Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N_{ch}*

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of N_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch}, modest fluctuation of [p_T] and Strong correlation between them

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5 105100

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N_{ch}*
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) E 105100

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !
- Below the knee, half of the contribution is from impact parameter fluctuation and other half is due to intrinsic fluctuations

Dec 15, 2024

6/11

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) E 105100

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !
- Below the knee, half of the contribution is from impact parameter fluctuation and other half is due to intrinsic fluctuations
- The contribution of b-fluctuation graduallydisappears around the knee !

R. Samanta (IFJ, PAN)

Dec 15, 2024 6 / 11

Probing initial state correlation : Correlation between $[p_T]$ and v_n^2

P. Bozek, PRC 93, 044908 (2016), P. Bozek, RS, PRC 104, 014905 (2021)

• Pearson's correlation coefficient between [*p_T*] and *v_n*² (Bozek's correlator) :

$$\rho([p_{T}], v_{n}^{2}) = \frac{\langle [p_{T}] v_{n}^{2} \rangle - \langle [p_{T}] \rangle \langle v_{n}^{2} \rangle}{\sqrt{(\langle [p_{T}]^{2} \rangle - \langle [p_{T}] \rangle^{2})(\langle (v_{n}^{2})^{2} \rangle - \langle v_{n}^{2} \rangle^{2})}}$$

 $\langle \dots \rangle \Longrightarrow$ average over events

 To map initial state of collision, linear predictor for [p_T] and v_n :

 $[p_T] = f(R, S, \epsilon_n^2)$ and $v_n^2 = f(\epsilon_n^2, R, S)$

- $\mathsf{R}=\mathsf{rms}$ radius of the overlap area
- S = total initial entropy
- ϵ_n = initial eccentricity
- ρ([p_T], v₂²) : model result qualitatively describe the data, change of sign occur at more peripheral collision.

R. Samanta (IFJ, PAN)

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low *p*_T).

∃ >

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- ► First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : but does not depend on the direction (φ) of outgoing particles

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- ► First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : but does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

where
$$N(p_T) - N_0(p_T) = \delta N(p_T)$$
 and $[p_T] - \langle p_T \rangle = \delta p_T$

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : but does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

- where $N(p_T) N_0(p_T) = \delta N(p_T)$ and $[p_T] \langle p_T \rangle = \delta p_T$
- The scaled quantity $v_0(p_T)/v_0$ is independent of centrality (same observed for $v_n(p_T)/v_n$ by ATLAS !).

< ロ > < 同 > < 回 > < 回 >

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- ► First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : but does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

where
$$N(p_T) - N_0(p_T) = \delta N(p_T)$$
 and $[p_T] - \langle p_T \rangle = \delta p_T$

- The scaled quantity $v_0(p_T)/v_0$ is independent of centrality (same observed for $v_n(p_T)/v_n$ by ATLAS !).
- Can constrain medium properties. Difference : sensitive to bulk viscosity only.

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

• ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and $E_T \longrightarrow$ long-range correlation \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

- ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and $E_T \longrightarrow$ long-range correlation \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$
- Impact parameter fluctuation plays negligible role in central collisions (up to 10 %) → dominated by quantum fluctuations !

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

- ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and $E_T \longrightarrow$ long-range correlation \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$
- Impact parameter fluctuation plays negligible role in central collisions (up to 10 %) → dominated by quantum fluctuations !
- By fitting the two most centralities, we make robust predictions on multiplicities for more central bins.

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

- ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and $E_T \longrightarrow$ long-range correlation \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$
- Impact parameter fluctuation plays negligible role in central collisions (up to 10 %) → dominated by quantum fluctuations !
- By fitting the two most centralities, we make robust predictions on multiplicities for more central bins.
- Repeating the same analysis using different centrality classifier covering a different rapidity window and using the fit parameters, direct information on rapidity decorrelation (r) can be obtained.

R. Samanta (IFJ, PAN)

Outlook

- Third decade of collectivity \longrightarrow first measurement in 2001 !
- \bullet Proposing novel probes \longrightarrow better understanding of the QGP medium properties and dynamics
- Moving towards smaller systems :
 - Collectivity in O+O collision, pioneered by Sivert and Noronha-Hostler arXiv:1901.01319, Rybczynski and Broniowski arXiv: 1910.09489 and recent surging interests, arXiv: 2103.03345, 2308.06078, 2404.08385, 2404.09780, 2407.15065
 - When the provide the provided and the
 - **③** Can we apply hydrodynamics in those systems ?
 - Machine learning in HI collision..... Mallik et al., arXiv:2203.01246, Hirvonen, Eskola,

Niemi, arXiv: 2303.04517, Goswami et al. arXiv: 2404.09839

Thank you !