XVII Polish Workshop on Relativistic Heavy-Ion Collisions: Phase diagram and Equation of State of strongly interacting matter

Contribution ID: 40

Type: not specified

Probing QGP through correlations and fluctuations of collective observables

Sunday 15 December 2024 13:15 (15 minutes)

The matter produced in an ultra-relativistic heavy-ion collision, dubbed as the QGP, posses a temperature 10^5 times that of Sun's core and survives for a very short time (10^{-22} s) , producing thousands of particles which exhibit collective motion described by some global observables, e.g. charged particle multiplicity(N_{ch}), mean transverse momentum per particle ($[p_T]$), harmonic flow (V_n) etc. Fluctuations and correlations between these observables contain crucial information of the QGP medium as well as of the nuclear properties. We study in hydrodynamic model p_T -dependent event-by-event fluctuation of V_n probed by the factorization breaking coefficient, which shows decorrelation at higher p_T -bins. We study the fluctuation of $[p_T]$ in ultra-central Pb+Pb collision and explain the sudden fall in the ATLAS data over a narrow range of multiplicity. We show in our model that this sharp fall is a consequence of the underlying thermalization assumption of the system. We also study the observable $v_0(p_T)$, first introduced by Teaney et al., which is similar to anisotropic flow in terms of its collective nature and, it correlates the spectra with the event-by-event mean transverse momentum per particle ($[p_T]$). We present model predictions for charged and identified particles. Additionally, we show how $v_0(p_T)$ can be used to capture the p_T -acceptance effect of different collective observables. Through these above-mentioned studies, we present an overall picture how correlations and fluctuations of the collective observables can be used to study the dynamics and properties of the QGP medium.

Presenter: SAMANTA, Rupam (AGH University of Krakow, Poland)

Session Classification: Session 3