Exaggerated Certainty: One Statistician's Take on EoE

Richard Lockhart

PHYSTAT

1 / 17

Summary, not outline

- \blacktriangleright Uncertainty is routinely underestimated.
- \blacktriangleright EoE is a very nice idea.
- \triangleright Statisticians usually analyze one experiment at a time.
- \triangleright Exceptions are in Meta Analysis and in auxiliary data and paradata in Survey Sampling.
- \triangleright Wilks theorem hinges on having "asymptotically unbiased" estimating equations.
- \triangleright When adding terms to log-likelihoods focus on bias of the resulting estimating equations

Summary concluded

- \triangleright A toy example shows importance of independence assumption.
- If you insist on frequency guarantees do you average over both data sets or condition on auxiliary data?
- \triangleright Should all systematic errors be treated as if error rates could have frequentist control?
- \triangleright Bayesian posteriors smoothly incorporate auxiliary information about common parameters into new analysis.
- \triangleright Lots of study needed to deal with degrees of freedom.
- ▶ Some work on degrees of freedom in smoothing problems.

Simple vision

- \blacktriangleright Two experiments: main and auxiliary
- \blacktriangleright Two models: primary has parameters θ and γ .
- **Auxiliary had parameters** γ and say τ .
- In primary experiment θ , γ is not identifiable or poorly identified
- \triangleright Or just "borrow strength" from the auxiliary experiment to reduce overall uncertainty about γ and therefore θ .
- \triangleright Natural but usually impractical frequentist strategy: put the two data sets together and fit a model to the combined data.
- \triangleright Log-likelihood is, assuming independence of experiments, (m, a) for *main* and *auxiliary*)

$$
\ell_{\text{comb}}(\theta, \gamma, \tau) = \ell_m(\theta, \gamma) + \ell_a(\gamma, \tau)
$$

 \triangleright Same marginal models for the two experiments, more parameters to fit.

Standard HEP alternative

- Find normal approximation to estimation error for γ in auxiliary experiment.
- ► Model $\hat{\gamma}_a$ as Normal (γ, σ^2) with σ known.
- Actually σ^2 estimated usually via standard MLE with inverse of negative Hessian .
- \blacktriangleright Call this estimate V.
- \triangleright Now do "natural", less "impractical" thing and treat the data set as the primary data together with $\hat{\gamma}_a$.

Standard HEP alternative 2

- \triangleright Joint model is original model for main expt with independent Gaussian model for $\hat{\gamma}_a$.
- \blacktriangleright Log-likelihood is replaced by

$$
\ell_1(\theta,\gamma)=\ell_m(\theta,\gamma)-\frac{(\gamma-\hat{\gamma}_a)^2}{2V}
$$

Estimate parameters by MLE – solve system of likelihood equations:

$$
\frac{\partial}{\partial \theta} \ell_1(\theta, \gamma) = 0
$$

and

$$
\frac{\partial}{\partial \gamma} \ell_1(\theta, \gamma) - \frac{\partial}{\partial \gamma} \frac{(\gamma - \hat{\gamma}_a)^2}{2V} = 0
$$

 \triangleright Key point, fixed by Glen and Enzo, this system of equations is biased.

Estimating equations, Wilks Theorem

 \blacktriangleright Real likelihood equations are

$$
\mathsf{Score} = \mathsf{0}
$$

 \triangleright Basic ingredient of all MLE theory: these equations are unbiased

$$
\mathrm{E}_{\theta,\gamma}\left\{\nabla_{\theta,\gamma}\ell(\theta,\gamma)\right\}=0
$$

- \blacktriangleright Wilks theorem needs this to centre the χ^2 approximation.
- \triangleright So you want for HEP strategy:

$$
\mathrm{E}_{\theta,\gamma,\tau}\left\{ \ell_1(\theta,\gamma) \right\}=0
$$

which means we need

$$
\mathrm{E}_{\gamma,\tau}\left\{\frac{\gamma-\hat{\gamma}_a}{V}\right\}=0
$$

 \triangleright The presence of V makes this unlikely to be right.

Errors on Errors fixes the problem

- **I** Most classical case for statisticians: γ is a mean parameter in a Gaussian linear model .
- Simplest: Y_1, \ldots, Y_n independent $N(\gamma, \tau)$. $(\tau = \sigma^2)$
- ► Auxiliary likelihood ($\tau = \sigma^2$, $S = \sum (Y_i \bar{Y})^2$)

$$
\ell_a(\gamma,\tau)=-\frac{n}{2}\log(\tau)-\frac{n(\bar{Y}-\gamma)^2+S}{2\tau}.
$$

► The MLE of γ, τ is then

$$
\hat{\gamma}_a = \bar{Y} \quad \hat{\tau} = S/n.
$$

 \blacktriangleright Wilks theorem: for true value of γ

$$
\Lambda(\gamma) = 2 \left\{ \ell_a(\hat{\gamma}, \hat{\tau}) - \ell(\gamma, \hat{\tau}(\gamma)) \right\} \approx \chi_1^2
$$

where $\hat{\tau}(\gamma) = \sum (Y_i - \gamma)^2/n$.

Enzo and Glen summary for me not audience

- Glen and Enzo treat the auxiliary data not as Y_1, \ldots, Y_n but as $\hat{\gamma}$, $\hat{\tau}$ and write down the exact likelihood for this data.
- **Figure 1** The actual distribution of $\hat{\tau}$ is given by

$$
\frac{n\hat{\tau}}{\tau} \sim \chi_{\nu}^2
$$

where $\nu = n - 1$ is the degrees of freedom.

- And $\hat{\tau}$ is independent of $\hat{\gamma}_a = \overline{Y}$
- \triangleright Degrees of freedom $n-1$; uses unbiased variance estimate.
- \triangleright Exact auxiliary likelihood is as in Enzo and Glen's work: normal $(\gamma, \tau) \times$ *independent* chi-squared.
- ► Corresponding *r* has $\nu = n 1 = \frac{1}{2r^2} = \frac{1}{2\epsilon}$ $2\epsilon^2$

In Largest r, smallest df (for linear model) are df = 1 and $r^2 = \frac{1}{2}$ $\frac{1}{2}$.

A very small example

- \triangleright Goal: to illustrate extent to which independence assumption and gamma assumption could be flawed.
- \triangleright To show these assumptions may not be really crucial.
- ► On-off. Main experiment observe Y \sim Poisson($s + b$). Unidentified model for On.
- ► Auxiliary experiment observe $X \sim \text{Poisson}(b)$.
- \blacktriangleright We have \hat{b}_a $=$ X . Estimated variance of \hat{b} is V $=$ X from neg Hessian.
- If Three likelihoods to compare: ℓ_{comb} , ℓ_{HFP} and ℓ_{FoF} .
- \triangleright Do low statistics strong (apparent) signal example: $Y = 40$, $X = 10$.

Signal

Coverage probabilities

True Signal

Slides commentary

- \triangleright Even in this small example impacts not huge at coverage 95%.
- \blacktriangleright Choice of r matters to coverage.
- \triangleright Discrete data gives unsmooth coverage probs
- \blacktriangleright The profile score for the background can have two local maxima in the permissible parameter space.

Meta Analysis and Auxiliary Information

- \triangleright Statisticians have a long history of focusing on analyzing each individual data set as if it were the only data to be had.
- \triangleright In Meta Analysis several experiments / studies are analyzed together parameters of interest in common but different nuisance parameters in each.
- \triangleright Typical problem: different biases for the estimates of the common parameters of interest. Handled in a variety of somewhat unsatisfactory ways.
- \triangleright Reminds me of problem of nearly 20 years ago: parton distribution function estimates differ between experimental groups by huge number of standard errors.
- \blacktriangleright In survey samples it is common to have control measurements produced from census data or to have paradata about respondents (e.g. how hard you had to work to get a response)
- \blacktriangleright In the medical literature use of empirical likelihood.

What needs doing; things to investigate maybe

- \triangleright Models with many parameters: risk of accumulating bias.
- \blacktriangleright Maximum likelihood underestimates variance parameters.
	- \blacktriangleright In linear regression MLEs of variances are adjusted to remove bias.
	- \triangleright Variance estimates are independent of mean estimates, have gamma distributions, and known degrees of freedom.
- \blacktriangleright In other models the location estimates are skewed and not independent of the variability estimates. We need more study of the impact of multiple slightly skewed estimates.
- \triangleright There is work by, for example Zou, Hastie, and Tibshirani on degrees of freedom in variable selection.

Bayes has its advantages

- \blacktriangleright I am skeptical of the wisdom of treating theory uncertainty via frequentist methods.
- \triangleright That said it seems the theory uncertainties are not cleanly handled any other way.
- \blacktriangleright The posterior from the auxiliary experiment captures any nuance in the distribution of the uncertainty in γ .
- \triangleright So routine use of Bayesian methods would give sensible combinations of evidence.
- \triangleright Bayes susceptible, in complex models, to hidden strengths of assumptions encoded in priors.
- \triangleright Computer experiment literature full of uncertainty assignments to things like theory calculations where there is no frequentist uncertainty.

Three References

- ▶ H Zou, T Hastie, R. Tibshirani (2007) On the "degrees of freedom" of the LASSO. Annals of Statistics, 25,2173-2192.
- \triangleright C Chen, P Han, F He (2022) Improving main analysis by borrowing information from auxiliary data. Statistics in Medicine, 41, 567-579.
- ▶ M Borenstein, L Hedges, J Higgins, H Rothstein (2021) Introduction to Meta-Analysis, 2nd ed. Wiley,