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Summary, not outline

I Uncertainty is routinely underestimated.

I EoE is a very nice idea.

I Statisticians usually analyze one experiment at a time.

I Exceptions are in Meta Analysis and in auxiliary data and
paradata in Survey Sampling.

I Wilks theorem hinges on having ”asymptotically unbiased”
estimating equations.

I When adding terms to log-likelihoods focus on bias of the
resulting estimating equations

2 / 17



Summary concluded

I A toy example shows importance of independence assumption.

I If you insist on frequency guarantees do you average over both
data sets or condition on auxiliary data?

I Should all systematic errors be treated as if error rates could
have frequentist control?

I Bayesian posteriors smoothly incorporate auxiliary information
about common parameters into new analysis.

I Lots of study needed to deal with degrees of freedom.

I Some work on degrees of freedom in smoothing problems.

3 / 17



Simple vision

I Two experiments: main and auxiliary

I Two models: primary has parameters θ and γ.

I Auxiliary had parameters γ and say τ .

I In primary experiment θ, γ is not identifiable or poorly
identified

I Or just “borrow strength” from the auxiliary experiment to
reduce overall uncertainty about γ and therefore θ.

I Natural but usually impractical frequentist strategy: put the
two data sets together and fit a model to the combined data.

I Log-likelihood is, assuming independence of experiments,
(m, a for main and auxiliary)

`comb(θ, γ, τ) = `m(θ, γ) + `a(γ, τ)

I Same marginal models for the two experiments, more
parameters to fit.
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Standard HEP alternative

I Find normal approximation to estimation error for γ in
auxiliary experiment.

I Model γ̂a as Normal(γ, σ2) with σ known.

I Actually σ2 estimated usually via standard MLE with inverse
of negative Hessian .

I Call this estimate V .

I Now do “natural”, less “impractical” thing and treat the data
set as the primary data together with γ̂a.
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Standard HEP alternative 2

I Joint model is original model for main expt with independent
Gaussian model for γ̂a .

I Log-likelihood is replaced by

`1(θ, γ) = `m(θ, γ)− (γ − γ̂a)2

2V

I Estimate parameters by MLE – solve system of likelihood
equations:

∂

∂θ
`1(θ, γ) = 0

and
∂

∂γ
`1(θ, γ)− ∂

∂γ

(γ − γ̂a)2

2V
= 0

I Key point, fixed by Glen and Enzo, this system of equations is
biased.
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Estimating equations, Wilks Theorem

I Real likelihood equations are

Score = 0

I Basic ingredient of all MLE theory: these equations are
unbiased

Eθ,γ {∇θ,γ`(θ, γ)} = 0

I Wilks theorem needs this to centre the χ2 approximation.

I So you want for HEP strategy:

Eθ,γ,τ {`1(θ, γ)} = 0

which means we need

Eγ,τ

{
γ − γ̂a
V

}
= 0

I The presence of V makes this unlikely to be right.
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Errors on Errors fixes the problem

I Most classical case for statisticians: γ is a mean parameter in
a Gaussian linear model .

I Simplest: Y1, . . . ,Yn independent N(γ, τ). (τ = σ2)

I Auxiliary likelihood ( τ = σ2, S =
∑

(Yi − Ȳ )2)

`a(γ, τ) = −n

2
log(τ)− n(Ȳ − γ)2 + S

2τ
.

I The MLE of γ, τ is then

γ̂a = Ȳ τ̂ = S/n.

I Wilks theorem: for true value of γ

Λ(γ) = 2 {`a(γ̂, τ̂)− `(γ, τ̂(γ))} ≈ χ2
1

where τ̂(γ) =
∑

(Yi − γ)2/n.

8 / 17



Enzo and Glen summary for me not audience

I Glen and Enzo treat the auxiliary data not as Y1, . . . ,Yn but
as γ̂, τ̂ and write down the exact likelihood for this data.

I The actual distribution of τ̂ is given by

nτ̂

τ
∼ χ2

ν

where ν = n − 1 is the degrees of freedom.

I And τ̂ is independent of γ̂a = Ȳ

I Degrees of freedom n − 1; uses unbiased variance estimate.

I Exact auxiliary likelihood is as in Enzo and Glen’s work:
normal(γ, τ)× independent chi-squared.

I Corresponding r has ν = n − 1 = 1
2r2

= 1
2ε2

I Largest r , smallest df (for linear model ) are df = 1 and
r2 = 1

2 .
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A very small example

I Goal: to illustrate extent to which independence assumption
and gamma assumption could be flawed.

I To show these assumptions may not be really crucial.

I On-off. Main experiment observe Y ∼Poisson(s + b).
Unidentified model for On.

I Auxiliary experiment observe X ∼Poisson(b).

I We have b̂a = X . Estimated variance of b̂ is V = X from neg
Hessian.

I Three likelihoods to compare: `comb, `HEP and `EoE.

I Do low statistics strong (apparent) signal example: Y = 40,
X = 10.
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Deviance Drop
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Coverage probabilities

0 10 20 30 40

0.
93

0.
95

0.
97

0.
99

True Signal

C
ov

er
ag

e 
P

ro
ba

bi
lit

y Combined
Gaussian
EoE r=0.5
EoE r=0.3
EoE r=0.1

12 / 17



Slides commentary

I Even in this small example impacts not huge at coverage 95%.

I Choice of r matters to coverage.

I Discrete data gives unsmooth coverage probs

I The profile score for the background can have two local
maxima in the permissible parameter space.
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Meta Analysis and Auxiliary Information
I Statisticians have a long history of focusing on analyzing each

individual data set as if it were the only data to be had.
I In Meta Analysis several experiments / studies are analyzed

together parameters of interest in common but different
nuisance parameters in each.

I Typical problem: different biases for the estimates of the
common parameters of interest. Handled in a variety of
somewhat unsatisfactory ways.

I Reminds me of problem of nearly 20 years ago: parton
distribution function estimates differ between experimental
groups by huge number of standard errors.

I In survey samples it is common to have control measurements
produced from census data or to have paradata about
respondents (e.g. how hard you had to work to get a
response)

I In the medical literature use of empirical likelihood.
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What needs doing; things to investigate maybe

I Models with many parameters: risk of accumulating bias.
I Maximum likelihood underestimates variance parameters.

I In linear regression MLEs of variances are adjusted to remove
bias.

I Variance estimates are independent of mean estimates, have
gamma distributions, and known degrees of freedom.

I In other models the location estimates are skewed and not
independent of the variability estimates. We need more study
of the impact of multiple slightly skewed estimates.

I There is work by, for example Zou, Hastie, and Tibshirani on
degrees of freedom in variable selection.
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Bayes has its advantages

I I am skeptical of the wisdom of treating theory uncertainty via
frequentist methods.

I That said it seems the theory uncertainties are not cleanly
handled any other way.

I The posterior from the auxiliary experiment captures any
nuance in the distribution of the uncertainty in γ.

I So routine use of Bayesian methods would give sensible
combinations of evidence.

I Bayes susceptible, in complex models, to hidden strengths of
assumptions encoded in priors.

I Computer experiment literature full of uncertainty
assignments to things like theory calculations where there is
no frequentist uncertainty.
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