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Formulation of the problem

• Effectively, we modify the distribution for modelling systematic effects

• We use a Student’s t-distribution instead of a Gaussian distribution.
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• The student t distribution has longer 
tails for larger values of 𝜺

• Outliers are de-weighted in the 
fit/combination

For more details: Eur. Phys. J. C (2019) 79:133

𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on systematic 
error 𝝈𝒖𝒊
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*In this interpretation 𝝈𝒖𝒊
𝟐  is 

replaced by 𝒗𝒊 in the profile 
likelihood
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Gamma Variance Model
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If data are internally compatible results are only slightly modified

Sensitivity to outliers
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Sensitivity to outliers
• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed
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Sensitivity to outliers
• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed



1. The outlier is de-weighted

2. The confidence interval grows: the model treats internal incompatibility as an 
additional source of uncertainty

Conclusion: The model is sensitive to internal compatibility of the data
31

Sensitivity to outliers

Confidence interval
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• We use the likelihood to construct test statistics to compute CI 
(Confidence Intervals) or evaluate GOFs (Goodness-Of-Fits):

• Profile likelihood ratio (CI):

𝑤I = 2[log 𝐿 D𝝁, E𝜽 − log 𝐿 𝝁, EE𝜽 	]

• goodness-of-fit (chi2):

𝑞 = −2 log 𝐿 )𝝁, ,𝜽

Beyond Wilks’ theorem
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Beyond Wilks’ theorem
• To compute CIs and GOFs often asymptotics properties are used:

𝑤!~𝜒"	$

𝑞~𝜒%&"	$

• Problem: Our likelihood is not quadratic; test statistics deviate from asymptotic 
formulas by 𝒪(𝜖&), as the likelihood is not anymore quadratic because of the presence 

of terms like 𝟏 + 𝟏
𝟐𝜺𝒊

𝟐 𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊#𝜽𝒊)𝟐

𝝈𝒖𝒊
𝟐

• Equivalence: Equivalent problem of having a small sample size: 𝒏𝒆𝒇𝒇 	 = 𝟏 + 𝟏
𝟐𝜺𝟐
	

*P = number POIs
N = number of measurements

Effective sample size
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Bartlett Corrections

𝑡 𝑡∗ = 𝑡
𝑁"#$
𝐸[𝑡]

Modify the test statistic 𝑡 so that its distribution is closer to a 𝜒&	:

𝑡~𝜒$ + 𝒪 𝜖$	

𝑡∗~𝜒$ + 𝒪 𝜖(

Bartlett
Gauss M. Cordeiro, Francisco Cribari-Neto

Canonero, Cowan, Brazzale

https://royalsocietypublishing.org/doi/10.1098/rspa.1937.0109
https://doi.org/10.1007/978-3-642-55255-7
https://doi.org/10.1140/epjc/s10052-023-12263-7
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expectation 
value

Expectation value in 
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of 𝜒&)

Bartlett
Gauss M. Cordeiro, Francisco Cribari-Neto

Canonero, Cowan, Brazzale
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Bartlett Corrections

𝑡 𝑡∗ = 𝑡
𝑁"#$
𝐸[𝑡]

𝑡~𝜒$ + 𝒪 𝜖$	

𝑡∗~𝜒$ + 𝒪 𝜖(

Modify the test statistic 𝑡 so that its distribution is closer to a 𝜒&	:

Exact 
expectation 
value

Expectation value in 
the asymptotic limit 
(degrees of freedom 
of 𝜒&)

*Bartlett correction originally 
developed for small sample sizes 
problems

Bartlett
Gauss M. Cordeiro, Francisco Cribari-Neto

Canonero, Cowan, Brazzale

https://royalsocietypublishing.org/doi/10.1098/rspa.1937.0109
https://doi.org/10.1007/978-3-642-55255-7
https://doi.org/10.1140/epjc/s10052-023-12263-7
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Bartlett Corrections

• All these expectation values can be computed analytically up to 𝒪 𝜖( 	:

𝐸[𝑞] = 𝑁PQR + 𝑏!

𝑏! =(
"

3 − 4
𝜎#$!
%

	𝜎"%	
−
𝜎#$!
&

	𝜎"&	
𝜖"% + 𝒪 𝜖&

• We have recently computed 𝐸 𝑞  and 𝐸 𝜔!  up to 𝒪 𝜖(



Correlations in Combinations - Recap

38

• BLUE (Best Linear Unbiased Estimators) approach to fits:

𝜒$ =8
)

𝑦) − 𝜇 𝑊)*
&+(𝑦* − 𝜇)

𝑊)* = 𝑽)* +𝑼)*
(𝒔𝒚𝒔𝒕)

−𝟐𝒍𝒐𝒈𝑳 = 	𝝌𝟐
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• BLUE (Best Linear Unbiased Estimators) approach to fits:

𝜒$ =8
)

𝑦) − 𝜇 𝑊)*
&+(𝑦* − 𝜇)

𝑊)* = 𝑽)* +𝑼)*
(𝒔𝒚𝒔𝒕)

• 𝑽)*: Statistical covariance matrix.

• 𝑼)*
(𝒔𝒚𝒔𝒕): Covariance matrix induced by systematic source.

• 𝑼)*
(𝒔𝒚𝒔𝒕) = ∑1𝑼)*

(𝒔)

−𝟐𝒍𝒐𝒈𝑳 = 	𝝌𝟐
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Correlations in Combinations - Recap

• Nuisance parameters approach:

𝜒& =6
!M

𝑦! − 𝜇 −6
N
𝚪!
N𝜃N 𝑉!M

#O 𝑦M − 𝜇 −6
N
𝚪M
N𝜃N +6

N

𝒖𝒔 − 𝜃N &

𝝈𝒔𝟐

• 𝒖𝒔 set to 0: know biases already removed
• 𝝈𝒔𝟐 set to 1: absorbed in the definition of 𝚪
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𝝈𝒔𝟐

• 𝒖𝒔 set to 0: know biases already removed
• 𝝈𝒔𝟐 set to 1: absorbed in the definition of 𝚪

• Connection:    𝑼!M
(𝒔) = 𝝈𝒔𝟐	𝚪!

N𝚪M
N
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Correlations in Combinations - Recap

• Nuisance parameters approach:

𝜒& =6
!M

𝑦! − 𝜇 −6
N
𝚪!
N𝜃N 𝑉!M

#O 𝑦M − 𝜇 −6
N
𝚪M
N𝜃N +6

N

𝒖𝒔 − 𝜃N &

𝝈𝒔𝟐

• 𝒖𝒔 set to 0: know biases already removed
• 𝝈𝒔𝟐 set to 1: absorbed in the definition of 𝚪

• Connection:    𝑼!M
(𝒔) = 𝝈𝒔𝟐	𝚪!

N𝚪M
N

• Systematic uncertainties can induce ±1 correlations: 𝜌!M
(N) =

𝑉!M
N

𝑉!!
N 𝑉MM

N
=

Γ!
NΓM

N

|Γ!
N||ΓM

N|
= ±1
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Non-Trivial Correlations in Combinations

• What to do if you want to use non-trivial correlation assumptions? 𝜌!M
(N) ≠ ±1
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Non-Trivial Correlations in Combinations

• What to do if you want to use non-trivial correlation assumptions? 𝜌!M
(N) ≠ ±1

• Let’s do an easy example with only one systematic 𝜽𝒔

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔 𝑉!M

#O 𝑦M − 𝜇 − Γ!
N𝜽𝒔 +

𝑢N − 𝜽𝒔 &

𝜎N&
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Non-Trivial Correlations in Combinations

• What to do if you want to use non-trivial correlation assumptions? 𝜌!M
(N) ≠ ±1

• Let’s do an easy example with only one systematic 𝜽𝒔

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔 𝑉!M

#O 𝑦M − 𝜇 − Γ!
N𝜽𝒔 +

𝑢N − 𝜽𝒔 &

𝜎N&

• Define new parameters 𝜽𝒔
(𝒊) 



47

Non-Trivial Correlations in Combinations

• What to do if you want to use non-trivial correlation assumptions? 𝜌!M
(N) ≠ ±1

• Let’s do an easy example with only one systematic 𝜽𝒔

• Define new parameters 𝜽𝒔
(𝒊) 

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔

(𝒊) 𝑉!M#O 𝑦M − 𝜇 − ΓM
N𝜽𝒔

(𝒋) +6
!M

(𝑢N
! −𝜽𝒔

(𝒊))𝑪𝒊𝒋
𝒔 #O(𝑢N

M −𝜽𝒔
(𝒋))

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔 𝑉!M

#O 𝑦M − 𝜇 − Γ!
N𝜽𝒔 +

𝑢N − 𝜽𝒔 &

𝜎N&
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Non-Trivial Correlations in Combinations

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔

(𝒊) 𝑉!M#O 𝑦M − 𝜇 − ΓM
N𝜽𝒔

(𝒋) +6
!M

(𝑢N
! −𝜽𝒔

(𝒊))𝑪𝒊𝒋
𝒔 #O(𝑢N

M −𝜽𝒔
(𝒋))

• The new matrix 𝑪RS
𝒔  is defined as 

𝑪RS
𝒔 = 𝝈𝒔𝟐	𝜌!M

(N)
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Non-Trivial Correlations in Combinations

𝜒& =6
!M

𝑦! − 𝜇 − Γ!
N𝜽𝒔

(𝒊) 𝑉!M#O 𝑦M − 𝜇 − ΓM
N𝜽𝒔

(𝒋) +6
!M

(𝑢N
! −𝜽𝒔

(𝒊))𝑪𝒊𝒋
𝒔 #O(𝑢N

M −𝜽𝒔
(𝒋))

• The new matrix 𝑪RS
𝒔  is defined as 

𝑪RS
𝒔 = 𝝈𝒔𝟐	𝜌!M

(N)

• Generalization to errors-on-errors framework:

New paper for more details!  arXiv: 2407.05322 

𝜒- =2
'

𝑦' − 𝜇 − Γ'3𝜽𝒔
(𝒊) 𝑉'7*8 𝑦7 − 𝜇 − Γ73𝜽𝒔

(𝒋) + 𝑵 +
𝟏
𝟐𝝐𝒔𝟐

𝒍𝒐𝒈 𝟏 + 𝟐𝝐𝒔𝟐2
'7

(𝑢3
' −𝜽𝒔

(𝒊))𝑪𝒊𝒋
𝒔 *8

(𝑢3
7 −𝜽𝒔

(𝒋))

https://arxiv.org/abs/2407.05322


7-8 TeV ATLAS-CMS top-quark mass combination 

50

• The combination was performed with the 
BLUE approach:

                Reproduce it with the nuisance 
parameters approach described earlier

Goals

Combination paper: Phys. Rev. Lett. 132 (2024) 261902 

Our in parallel analysis (using public results): arXiv: 2407.05322

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261902
https://arxiv.org/abs/2407.05322


7-8 TeV ATLAS-CMS top-quark mass combination 
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• The combination was performed with the 
BLUE approach:

                Reproduce it with the nuisance 
parameters approach described earlier

• Top mass measurements are becoming 
systematics dominated 

• Potentially affected by QCD modelling 
systematics 

                Study errors-on-errors impact on the 
combination Combination paper: Phys. Rev. Lett. 132 (2024) 261902 

Our in parallel analysis (using public results): arXiv: 2407.05322

Goals

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261902
https://arxiv.org/abs/2407.05322
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7-8 TeV ATLAS-CMS top-quark mass combination 

From: arXiv:2402.08713

Robustness-test: Check if the combination is sensitive 
when any major systematic uncertainty is itself uncertain 

arxiv:2402.08713
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7-8 TeV ATLAS-CMS top-quark mass combination 

1. Treat the eight largest systematic uncertainties as 
potentially uncertain one at a time.

2. Assign an error-on-error parameter 𝜺𝒔 to each one.

3. Study how varying each 𝜺𝒔 individually affects the 
central value and confidence interval.

Robustness-test: Check if the combination is sensitive 
when any major systematic uncertainty is itself uncertain 

From: arXiv:2402.08713

arxiv:2402.08713
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7-8 TeV ATLAS-CMS top-quark mass combination 

1. Treat the eight largest systematic uncertainties as 
potentially uncertain one at a time.

2. Assign an error-on-error parameter 𝜺𝒔 to each one.

3. Study how varying each 𝜺𝒔 individually affects the 
central value and confidence interval.

Robustness-test: Check if the combination is sensitive 
when any major systematic uncertainty is itself uncertain 

Goal: Show a possible way to use the errors-on-errors 
model in an analysis 

From: arXiv:2402.08713

arxiv:2402.08713
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• As 𝜺𝒔 → 𝟎 we recover the results of the combination. Treatment of correlations consistent.

7-8 TeV ATLAS-CMS top-quark mass combination 

Central value Confidence interval
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• As 𝜺𝒔 → 𝟎 we recover the results of the combination. Treatment of correlations consistent.
• The central value is robust to the presence of uncertain systematic errors: 
 The change in the central value remains always within 0.1 GeV, well within the confidence 

 interval of approximately 0.3 GeV. 

7-8 TeV ATLAS-CMS top-quark mass combination 

Central value Confidence interval
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• As 𝜺𝒔 → 𝟎 we recover the results of the combination. Treatment of correlations consistent.
• The central value is robust to the presence of uncertain systematic errors: 
 The change in the central value remains always within 0.1 GeV, well within the confidence 

 interval of approximately 0.3 GeV. 
• The confidence interval is also stable, though it exhibits a 10% inflation when the LHC b-JES 

uncertainty has an error the error 

7-8 TeV ATLAS-CMS top-quark mass combination 

Central value Confidence interval



• Goal: Show how the combination is affected if any input measurement conflicts with 
others

Sensitivity to outliers
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• Goal: Show how the combination is affected if any input measurement conflicts with 
others

• Future relevance: Relevant for future LHC–Tevatron combinations or LHC Run 2 
combinations including the top mass measurement using a leptonic invariant mass (J. 
High Energ. Phys. 2023, 19).

Sensitivity to outliers

59

https://doi.org/10.1007/JHEP06(2023)019
https://doi.org/10.1007/JHEP06(2023)019


• Goal: Show how the combination is affected if any input measurement conflicts with 
others

• Future relevance: Relevant for future LHC–Tevatron combinations or LHC Run 2 
combinations including the top mass measurement using a leptonic invariant mass (J. 
High Energ. Phys. 2023, 19).

• Introduce fictitious measurement: Add a hypothetical measurement to explore the 
model properties in these scenarios.

Sensitivity to outliers
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https://doi.org/10.1007/JHEP06(2023)019
https://doi.org/10.1007/JHEP06(2023)019
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Sensitivity to outliers

• When 𝜺𝒔	is zero, the central value of the combination is pulled by the new measurement:
From   𝟏𝟕𝟐. 𝟓𝟐	𝑮𝒆𝑽 To   𝟏𝟕𝟐. 𝟗𝟏	𝑮𝒆𝑽

Central value
𝒎𝒕
𝑵𝑬𝑾 = 𝟏𝟕𝟒. 𝟓 ± 𝟎. 𝟒 ± 𝟎. 𝟓	𝑮𝒆𝑽

Independent systematic
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Sensitivity to outliers

𝒎𝒕
𝑵𝑬𝑾 = 𝟏𝟕𝟒. 𝟓 ± 𝟎. 𝟒 ± 𝟎. 𝟓	𝑮𝒆𝑽

• When 𝜺𝒔	is zero, the central value of the combination is pulled by the new measurement:

• If the new measurement is affected by a large uncertain systematic, it shifts back to the original value 

Central value

From   𝟏𝟕𝟐. 𝟓𝟐	𝑮𝒆𝑽 To   𝟏𝟕𝟐. 𝟗𝟏	𝑮𝒆𝑽

Independent systematic
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Sensitivity to outliers

• When 𝜺𝒔	is zero, adding the new measurement shrinks the CI: 𝟎. 𝟑𝟑	𝑮𝒆𝑽 𝟎. 𝟐𝟗	𝑮𝒆𝑽

𝒎𝒕
𝑵𝑬𝑾 = 𝟏𝟕𝟒. 𝟓 ± 𝟎. 𝟒 ± 𝟎. 𝟓	𝑮𝒆𝑽

Independent systematic

Confidence interval
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Sensitivity to outliers

• When 𝜺𝒔	is zero, adding the new measurement shrinks the CI:

• If the new measurement is affected by a large uncertain systematic, the CI inflates

𝟎. 𝟑𝟑	𝑮𝒆𝑽 𝟎. 𝟐𝟗	𝑮𝒆𝑽

𝒎𝒕
𝑵𝑬𝑾 = 𝟏𝟕𝟒. 𝟓 ± 𝟎. 𝟒 ± 𝟎. 𝟓	𝑮𝒆𝑽

Independent systematic

Confidence interval
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Sensitivity to outliers

• When 𝜺𝒔	is zero, adding the new measurement shrinks the CI:

• If the new measurement is affected by a large uncertain systematic, the CI inflates

• The tension in the dataset in treated as an additional source of uncertainty 

𝟎. 𝟑𝟑	𝑮𝒆𝑽 𝟎. 𝟐𝟗	𝑮𝒆𝑽

𝒎𝒕
𝑵𝑬𝑾 = 𝟏𝟕𝟒. 𝟓 ± 𝟎. 𝟒 ± 𝟎. 𝟓	𝑮𝒆𝑽

Independent systematic

Confidence interval



Summary conclusions
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Gamma variance model 

• A model to account from theory uncertainties, two points systematics, etc..
• The primary advantage of this approach is that it reduces the sensitivity of the fits to outliers.
• The presence of incompatible data is reflected by inflated error bars on the final results. 

Bartlett correction 

• Used to correct for deviations from Wilks’ theorem
• Useful tool to correct for small sample sizes errors

“Non-trivial” correlations 

• A method to use nuisance parameters for non-trivial systematics assumptions



Thank you for your attention



Back-up slides 



• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎)$ 

Motivation for the GVM

69



To implement “errors-on-errors” suppose the systematic variances 𝝈𝒖𝒊
𝟐  are 

adjustable parameters, and their best estimates 𝒗𝒊 are gamma distributed:

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶#𝟏𝒆#𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊𝟐

	 𝜷 =
𝟏

𝟒𝜺𝒊𝟐𝝈𝒖𝒊
𝟐

• 𝝈𝒖𝒊
𝟐 	Expectation value of 𝒗𝒊

• 𝜺𝒊: relative error on 𝝈𝒖𝒊: “Error on error”*

70

*𝜺 used to be 𝑟 in previous 
references

Gamma distribution



• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	f

!

1
2𝜋𝜎'"

𝑒( '"()" #/&𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊(𝟏𝒆(𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿0 𝝁, 𝜽  = 	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2
,
!

𝟏 +
𝟏
𝟐𝜺𝒊

𝟐 𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

71

Gamma Variance Model (GVM)



• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	f

!

1
2𝜋𝜎'"

𝑒( '"()" #/&𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊(𝟏𝒆(𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿0 𝝁, 𝜽  = 	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2
,
!

𝟏 +
𝟏
𝟐𝜺𝒊

𝟐 𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

• Profiling means computing

𝐿0 𝝁, 𝜽 	= 	𝐿 𝝁, 𝜽, jj𝝈𝒖𝒊
𝟐 ,  	 jj𝝈𝒖𝒊

𝟐 = 𝑎𝑟𝑔𝑚𝑎𝑥1&"# 𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐
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Gamma Variance Model (GVM)



• Gamma distributions include the case where the variance is estimate from 
a real dataset of control measurements:

𝑣" =
1

𝑛" − 1
& 𝑢",$ − (𝑢"

%	

• 𝑛 − 1 𝑣"/𝜎&!
%  follows a 𝜒'()%  distribution and 𝑣* a Gamma distribution 

with:
 

𝛼" =
𝑛" − 1
2

𝛽" =
𝑛" − 1
2𝜎#2

$

Motivation for the GVM
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• The likelihood function can be used to construct the profile likelihood ratio 
test statistic:

𝑤𝛍 = −2𝑙𝑛
𝐿 𝛍, EE𝜽

𝐿 D𝛍, E𝛉

• Use the 𝑝-value:

𝑝𝝁 = 	t
p𝛍,<=>

q
𝑓 𝑤𝛍|𝛍 	𝑑𝑤𝛍

• Include 𝝁 such that:
𝑝𝝁 < 𝛼

Calculation of confidence intervals
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𝑤𝛍 𝑤𝛍∗ = 𝑤𝛍
𝑀
𝐸[𝑤]

𝑤~	𝜒2$ + 𝒪 𝒏&+

𝑤∗~𝜒2$ + 𝒪 𝒏&$

• Modify the likelihood ratio 𝑤 directly so that its distribution is closer to the 
asymptotic form:
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Calculation of confidence intervals

To compute confidence intervals, rescale 
the results obtained with 
Standard methods, such as the Hessian 
method, by 𝑴

𝑬[𝒘]


