

UNIVERSITY OF CAMBRIDGE

Discrete Profiling (The Envelope Method) Experimental Perspective

Matt Kenzie University of Cambridge

PHYSTAT informal review Wednesday 4th December

The physics problem

Dataset, X_i, comes from some underlying distribution which is a composite of

- Background usually flat(ish) or smoothly falling
- Signal usually peaking
- Normally interested in the properties of the signal

Signal strength, μ , or peak position, m_0

• Don't care about the background parameters, λ , nor its *parameterisation*, b(X)

Although we do care about their contribution to signal parameter uncertainties

The physics problem

- Our models contain parameters of interest (POIs)
- And often contain several nuisance parameters
- Normally we profile over them in likelihood fits
- BUT what if we don't know the underlying p.d.f (*i.e. functional form*) of the model or part of the model?
- This is what we tried to address in our paper [JINST 10 P04015]
 - The specific application was the search for the Higgs boson

Handling uncertainties in background shapes: the discrete profiling method

P. D. Dauncey^a; M. Kenzie^b, N. Wardle^b and G. J. Davies^a

^aDepartment of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK. ^bCERN, CH-1211 Geneva 23, Switzerland. E-mail: P. Dauncey@imperial.ac.uk

ABSTRACT: A common problem in data analysis is that the functional form, as well as the parameter values, of the underlying model which should describe a dataset is not known a priori. In these cases some extra uncertainty must be assigned to the extracted parameters of interest due to lack of exact knowledge of the functional form of the model. A method for assigning an appropriate error is presented. The method is based on considering the choice of functional form as a discrete nuisance parameter which is profiled in an analogous way to continuous nuisance parameters. The bias and coverage of this method are shown to be good when applied to a realistic example.

- Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$
 - \blacktriangleright Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$
 - Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

• with λ floating

- Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$
 - Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- with λ floating
- \blacktriangleright with λ fixed to its best fit value

Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$

10

8

2 0 0.6

0.8

1.0

μ

 $-2\Delta \ln L$

- Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- with λ floating
- with λ fixed to its best fit value
- with λ fixed to other values

1.2

1.4

4/15

1.6

Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$

10

2 0 0.6

0.8

1.0

Ц

1.2

1.4

 $-2\Delta \ln L$

- Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- with λ floating
- with λ fixed to its best fit value
- with λ fixed to other values

1.6

Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$

10

- Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- with λ floating
- with λ fixed to its best fit value
- with λ fixed to other values

- Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$
 - Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

- with λ floating
- with λ fixed to its best fit value
- \blacktriangleright with λ fixed to other values
- draw the minimum "envelope"

- Smoothly falling background, $b(X; \lambda) = \lambda e^{-\lambda X}$
 - Nuisance parameter, λ
- Peaking signal, $s(X; m_0, \sigma) = \mathcal{N}(m_0, \sigma)$
 - Parameter of interest, μ

Inspect the profiled $-2\Delta \ln L(\mu)$

- with λ floating
- with λ fixed to its best fit value
- with λ fixed to other values
- draw the minimum "envelope"
- ► eventually the "envelope" → the full profile

Module choice as a discrete nuisance parameter

- The choice of underlying model can be treated as a discrete nuisance parameter in this way
- Profile over all of them and find the minimum envelope
- Gives me freedom over several choices and allows me to
 - Pick the model that "fits best" (as it will maximise the likelihood)
 - Compute an uncertainty related to the *model choice*
- Question for the statisticians: Is the space of model choices infinite / is this imagined nuisance parameter really discrete valued?

A (slightly) more realistic example

- The example from our paper is inspired by the Higgs search
- Small signal on a large smoothly falling background
- A few realistic (and one unrealistic) background models
 - Choices which are similar overlap (Laurent and Power Law)
 - Choices which are bad have no effect (Polynomial)
 - Choices which compete increase the uncertainty (Exponential)
- Uncertainty is increased if models are different
- No explicit model choice has to be made

Events / GeV

0 0.5

1.5

6/15

It has decent bias and coverage properties too

Generate samples from different background hypotheses and refit

Ah but wait...

- ▶ All seems hunky dory but what about models with *different numbers of parameters*
- The likelihood only measures agreement of data with model
 - Does not account for degrees of freedom
- Without any kind of *regularisation* would always choose the model with the *most* freedom ^[i]
- No natural mechanism for ignoring higher order functions [ii]
 - Question for the statisicians: when can we stop adding functions to try?

- Not obvious by how much
- Several possibilities
 - 1. Approximate *p-value correction*
 - 2. Exact p-value correction
 - 3. Aikaike information criteria (AIC)
 - 4. Bayesian information criteria (BIC)

What correction term?

From Wilks' theorem, as $N \to \infty$, then $-2\Delta \ln L \to \chi^2$ with $p(\chi^2, n_{\text{bins}} - n_{\text{pars}})$

Find χ'^2 which would have given same *p*-value but with different degrees of freedom

$$-2\Delta \ln L_{\rm corr} = \chi'^2 = -2\Delta \ln L + (\chi'^2 - \chi^2)$$

▶ On average $\chi'^2 - \chi^2 \approx N_{\rm par}$ and therefore *p*-value correction

$$-2\Delta \ln L_{\rm corr} = -2\Delta \ln L + N_{\rm par}$$

- Other options are available
- Aikaike information criterion (AIC):

$$-2\Delta \ln L_{\rm corr} = -2\Delta \ln L + 2N_{\rm par}$$

Bayesian information criterion (BIC):

$$-2\Delta \ln L_{\rm corr} = -2\Delta \ln L + N_{\rm par} \ln(n)$$

In general the correction takes the form

$$-2\Delta \ln L_{\rm corr} = -2\Delta \ln L + c N_{\rm par}$$

where c is some "correction value" to be determined by the user based on the use case and desired *bias / variance* trade-off

- Take the same dataset and try many functions (of different orders)
- Profile the likelihood as before investigating different corrections

- With no correction, c = 0
- Best Fit: 6th order polynomial (highest order tried)

- With *p*-value correction, c = 1 ($\Lambda + 1/d.o.f$)
- Best Fit: 2 parameter power law

- With Aikaike correction, $c = 2 (\Lambda + 2/d.o.f)$
- Best Fit: 2 parameter power law

Bias and coverage properties

- Generate samples from different background hypotheses and refit
- Bias and coverage properties of AIC considerably worse in this case

What happens to the error?

- For ensembles of samples the error when using the envelope increases
- This quantifies the systematic uncertainty contribution from the model choice
- \blacktriangleright The size of this systematic is smaller depending on the choice of c
- BUT at lower values of c the statistical uncertainty is larger
 - In principle if every function is allowed it is infinite
- ON THE OTHER HAND at large values of c the bias gets larger

- So the user has a choice bias or variance?
- Question for the statisicians: which correction should we use?

Other questions

Studies with mixed functions

- With two functions e.g. e^{-px} and x^{-p} does it make sense to try $fe^{-p_1x} + (1-f)x^{-p_2}$?
- Then 3 free parameters not 1. Does the correction handle this appropriately?
- Is there an analytical proof of which correction to use?
- How should one assess how many "model" choices is appropriate?
- Are there other ways of sampling more of the "model phase space" cheaply?
- Can one "interpolate" gaps in the discontinuous profiles?
- Are there fairer ways of generating MC from mixed model hypotheses?
 - How does one generate an "Asimov" toy from a composite model?
- How can we use the method to set *Bayesian* credible intervals rather than *frequentist* confidence intervals?
 - What prior should be used?
- How do you decide how many orders to include in the envelope if the choice is infinitely many?
 - Fisher test?

BACK UP