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The physics problem

▶ Dataset, Xi, comes from some underlying distribution which is a composite of
▶ Background - usually flat(ish) or smoothly falling
▶ Signal - usually peaking

▶ Normally interested in the properties of the signal

p(X;µ, θ⃗) = µ s(X;m0, σ)︸ ︷︷ ︸
signal

+Nb b(X;λ)︸ ︷︷ ︸
background

▶ Signal strength, µ, or peak position, m0

▶ Don’t care about the background parameters, λ, nor its parameterisation, b(X)
▶ Although we do care about their contribution to signal parameter uncertainties
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The physics problem

▶ Our models contain parameters of interest (POIs)

▶ And often contain several nuisance parameters

▶ Normally we profile over them in likelihood fits

▶ BUT what if we don’t know the underlying p.d.f (i.e. functional form) of the model or

part of the model?
▶ This is what we tried to address in our paper [JINST 10 P04015]

▶ The specific application was the search for the Higgs boson
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https://inspirehep.net/literature/1312971


Conceptualisation of a nuisance parameter

Using the example above

▶ Smoothly falling background, b(X;λ) = λe−λX

▶ Nuisance parameter, λ

▶ Peaking signal, s(X;m0, σ) = N (m0, σ)

▶ Parameter of interest, µ
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Inspect the profiled −2∆ lnL(µ)

▶ with λ floating

▶ with λ fixed to its best fit value

▶ with λ fixed to other values

▶ draw the minimum “envelope”

▶ eventually the “envelope” →
the full profile
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Module choice as a discrete nuisance parameter

▶ The choice of underlying model can be treated as a discrete nuisance parameter in

this way

▶ Profile over all of them and find the minimum envelope

▶ Gives me freedom over several choices and allows me to
▶ Pick the model that “fits best” (as it will maximise the likelihood)
▶ Compute an uncertainty related to the model choice

▶ Question for the statisticians: Is the space of model choices infinite / is this imagined

nuisance parameter really discrete valued?
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A (slightly) more realistic example

▶ The example from our paper is inspired by the Higgs search

▶ Small signal on a large smoothly falling

background

▶ A few realistic (and one unrealistic)
background models
▶ Choices which are similar overlap (Laurent

and Power Law)
▶ Choices which are bad have no effect

(Polynomial)
▶ Choices which compete increase the

uncertainty (Exponential)  (GeV)γγm
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It has decent bias and coverage properties too

▶ Generate samples from different background hypotheses and refit

-1 -0.5 0 0.5 1 1.5 2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

P
ro

fil
ed

 F
un

ct
io

n-1 -0.5 0 0.5 1 1.5 2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

La
ur

en
t

-1 -0.5 0 0.5 1 1.5 2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

E
xp

on
en

tia
l

-1 -0.5 0 0.5 1 1.5 2

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

P
ow

er
 L

aw

Laurent
Power Law
Exponential
Envelope

µ

 >σ
)/µ

 -
 

µ
<

 (

Small biases

-1 -0.5 0 0.5 1 1.5 2

0.9

0.95

1

1.05

1.1

1.15

P
ro

fil
ed

 F
un

ct
io

n-1 -0.5 0 0.5 1 1.5 2

0.9

0.95

1

1.05

1.1

1.15

La
ur

en
t

-1 -0.5 0 0.5 1 1.5 2

0.9

0.95

1

1.05

1.1

1.15

E
xp

on
en

tia
l

-1 -0.5 0 0.5 1 1.5 2

0.9

0.95

1

1.05

1.1

1.15

P
ow

er
 L

aw

Laurent

Power Law

Exponential

Envelope

µ

68.3% Interval

C
ov

er
ag

e/
E

xp
ec

te
d 

C
ov

er
ag

e

Good coverage
7/15



Ah but wait...

▶ All seems hunky dory but what about models with different numbers of parameters
▶ The likelihood only measures agreement of data with model

▶ Does not account for degrees of freedom

▶ Without any kind of regularisation would always choose the model with the most

freedom [i]

▶ No natural mechanism for ignoring higher order functions [ii]

▶ Question for the statisicians: when can we stop adding functions to try?

▶ Our solution is to correct (regularise)
the likelihood
▶ Not obvious by how much
▶ Several possibilities

1. Approximate p-value correction

2. Exact p-value correction

3. Aikaike information criteria (AIC)

4. Bayesian information criteria (BIC)
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[i]At least for nested families like polynomials
[ii]Maybe something like a Fisher test?
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What correction term?

▶ From Wilks’ theorem, as N → ∞, then −2∆ lnL → χ2 with p(χ2, nbins − npars)

▶ Find χ′2 which would have given same p-value but with different degrees of freedom

−2∆ lnLcorr = χ′2 = −2∆ lnL+ (χ′2 − χ2)

▶ On average χ′2 − χ2 ≈ Npar and therefore p-value correction

−2∆ lnLcorr = −2∆ lnL+Npar

▶ Other options are available

▶ Aikaike information criterion (AIC):

−2∆ lnLcorr = −2∆ lnL+ 2Npar

▶ Bayesian information criterion (BIC):

−2∆ lnLcorr = −2∆ lnL+Npar ln(n)

▶ In general the correction takes the form

−2∆ lnLcorr = −2∆ lnL+ cNpar

where c is some “correction value” to be determined by the user based on the use

case and desired bias / variance trade-off
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The example case with higher order functions

▶ Take the same dataset and try many functions (of different orders)

▶ Profile the likelihood as before investigating different corrections
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The example case with higher order functions

▶ With no correction, c = 0

▶ Best Fit: 6th order polynomial (highest order tried)
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The example case with higher order functions

▶ With p-value correction, c = 1 (Λ + 1/d.o.f)

▶ Best Fit: 2 parameter power law
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The example case with higher order functions

▶ With Aikaike correction, c = 2 (Λ + 2/d.o.f)

▶ Best Fit: 2 parameter power law
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Bias and coverage properties

▶ Generate samples from different background hypotheses and refit

▶ Bias and coverage properties of AIC considerably worse in this case
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What happens to the error?

▶ For ensembles of samples the error when using the envelope increases

▶ This quantifies the systematic uncertainty contribution from the model choice

▶ The size of this systematic is smaller depending on the choice of c
▶ BUT at lower values of c the statistical uncertainty is larger

▶ In principle if every function is allowed it is infinite

▶ ON THE OTHER HAND at large values of c the bias gets larger

▶ So the user has a choice

bias or variance?

▶ Question for the statisicians: which

correction should we use?
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Other questions

▶ Studies with mixed functions
▶ With two functions e.g. e−px and x−p does it make sense to try fe−p1x +(1− f)x−p2?
▶ Then 3 free parameters not 1. Does the correction handle this appropriately?

▶ Is there an analytical proof of which correction to use?

▶ How should one assess how many “model” choices is appropriate?

▶ Are there other ways of sampling more of the “model phase space” cheaply?

▶ Can one “interpolate” gaps in the discontinuous profiles?

▶ Are there fairer ways of generating MC from mixed model hypotheses?
▶ How does one generate an “Asimov” toy from a composite model?

▶ How can we use the method to set Bayesian credible intervals rather than frequentist
confidence intervals?
▶ What prior should be used?

▶ How do you decide how many orders to include in the envelope if the choice is
infinitely many?
▶ Fisher test?
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