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The physics problem

» Dataset, X;, comes from some underlying distribution which is a composite of
» Background - usually flat(ish) or smoothly falling
> Signal - usually peaking
» Normally interested in the properties of the signal
p(X;5p,0) = p s(X;mo,0) + No b(X;A)
—_——— ——
signal background
» Signal strength, u, or peak position, mg
» Don't care about the background parameters, A, nor its parameterisation, b(X)
> Although we do care about their contribution to signal parameter uncertainties

--- Background
~~~~~~ Signal
Total

9 Data
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The physics problem

» Our models contain parameters of interest (POls)

» And often contain several nuisance parameters

» Normally we profile over them in likelihood fits

» BUT what if we don't know the underlying p.d.f (i.e. functional form) of the model or

part of the model?
» This is what we tried to address in our paper [JINST 10 P04015]
» The specific application was the search for the Higgs boson

Handling uncertainties in background shapes: the
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100
ABSTRACT: A common problem in data analysis is that the functional form, as well as the parame-
ter values, of the underlying model which should describe a dataset is not known a priori. In these
cases some extra uncertainty must be assigned to the extracted parameters of interest due to lack
of exact knowledge of the functional form of the model. A method for assigning an appropriate
error is presented. The method is based on considering the choice of functional form as a discrete
nuisance parameter which is profiled in an analogous way to continuous nuisance parameters. The i“
bias and coverage of this method are shown to be good when applied to a realistic example. T
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https://inspirehep.net/literature/1312971

Conceptualisation of a nuisance parameter

Using the example above
> Smoothly falling background, b(X; X) = Xe™ ™
» Nuisance parameter, A

> Peaking signal, s(X;mo,0) = N(mo,o)

»  Parameter of interest, u

4/15



Conceptualisation of a nuisance parameter

Using the example above
> Smoothly falling background, b(X; X) = Xe™ ™
» Nuisance parameter, A
> Peaking signal, s(X;mo,0) = N(mo,o)

»  Parameter of interest, u

Inspect the profiled —2A In L(u)

» with )\ floating

—2AInL
e

Full Profile

0.6 0.8

4/15



Conceptualisation of a nuisance parameter

Using the example above
> Smoothly falling background, b(X; X) = Xe™ ™

» Nuisance parameter, A

> Peaking signal, s(X;mo,0) = N(mo,o)

»  Parameter of interest, u

Inspect the profiled —2A In L(u)

Full Profile
> with )\ ﬂoatlng —— Fit freezing nuisance parameter to best fit

> with A fixed to its best fit value

—2AInL




Conceptualisation of a nuisance parameter
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Conceptualisation of a nuisance parameter

Using the example above

> Smoothly falling background, b(X; X) = Xe™ ™
» Nuisance parameter, A
> Peaking signal, s(X;mo,0) = N(mo,o)

»  Parameter of interest, u

Inspect the profiled —2A In L(u)

— Full Profile

» with )\ floating

> with A fixed to its best fit value

Envlope

» with A\ fixed to other values o

> draw the minimum “envelope” < °©
|

» eventually the “envelope” — n

the full profile

Fit freezing nuisance parameter to best fit value
Fit freezing nuisance parameter to arbitary values
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Module choice as a discrete nuisance parameter

» The choice of underlying model can be treated as a discrete nuisance parameter in
this way
» Profile over all of them and find the minimum envelope
> Gives me freedom over several choices and allows me to
» Pick the model that “fits best” (as it will maximise the likelihood)

» Compute an uncertainty related to the model choice

> Question for the statisticians: Is the space of model choices infinite / is this imagined
nuisance parameter really discrete valued?
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A (slightly) more realistic example

» The example from our paper is inspired by the Higgs search

» Small signal on a large smoothly falling

> 250p
background 3 f } — Laurent
R R 1 — Exponential
> A few realistic (and one unrealistic) § 20 _ power Law
w .
background models o — Polynomial
» Choices which are similar overlap (Laurent b
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. sol-
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. . 220 220
> <=F < T
Uncertalnty 1S 218 — Laurent gl — Minimum Envelope
— Exponential

increased if models I s5.3% interval

— Power Law 216

95.4% Interval

— Polynomial

are different

> No explicit model 212
choice has to be made

I e B A R S

2040l LT L L
-1 05 0 05 1 15 2 25 204

; -0.! . ! 2 |,1 6/15



It has decent bias and coverage properties too

» Generate samples from different background hypotheses and refit
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Ah but wait...

» All seems hunky dory but what about models with different numbers of parameters
» The likelihood only measures agreement of data with model
» Does not account for degrees of freedom
» Without any kind of regularisation would always choose the model with the most
freedom [
> No natural mechanism for ignoring higher order functions [l

» Question for the statisicians: when can we stop adding functions to try?

580 F T T T T B

. . . 578F poll =

» Our solution is to correct (regularise) 5766 e E
the likelihood 574F — po:4 E
E — pols E

» Not obvious by how much 572F E
> Several possibilities S70E E

. ) 568 E

1. Approximate p-value correction 566E- E

2. Exact p-value correction 56457 E

3. Aikaike information criteria (AIC) se2F 3

4. Bayesian information criteria (BIC) 560 6—L I L L3

&
o
S
8

l1At least for nested families like polynomials

[ii]Maybe something like a Fisher test?
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What correction term?

> From Wilks' theorem, as N — oo, then —2AIn L — x? with p(x?2, 7bins — Mpars)

» Find x'? which would have given same p-value but with different degrees of freedom
—2A1In Leorr = X/2 = —2AInL+ (X/Q — XQ)
> On average x> — x? = Npar and therefore p-value correction
—2AIn Leor = —2AIn L + Npar
» Other options are available
» Aikaike information criterion (AIC):
—2A1In Leorr = —2A1In L 4 2Npar
» Bayesian information criterion (BIC):
—2AIn Leor = —2AIn L + Npar In(n)
» In general the correction takes the form
—2A1In Leorr = —2A1In L 4 ¢Npar

where ¢ is some ‘“correction value" to be determined by the user based on the use

case and desired bias / variance trade-off
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The example case with higher order functions

» Take the same dataset and try many functions (of different orders)

» Profile the likelihood as before investigating different corrections

250
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The example case with higher order functions

» With no correction, ¢ =0

> Best Fit: 6th order polynomial (highest order tried)
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The example case with higher order functions

» With p-value correction, ¢ =1 (A + 1/d.o.f)

» Best Fit: 2 parameter power law
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The example case with higher order functions

» With Aikaike correction, ¢ = 2 (A + 2/d.o.f)

» Best Fit: 2 parameter power law
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Bias and coverage properties

» Generate samples from different background hypotheses and refit

» Bias and coverage properties of AIC considerably worse in this case
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What happens to the error?

» For ensembles of samples the error when using the envelope increases
» This quantifies the systematic uncertainty contribution from the model choice

» The size of this systematic is smaller depending on the choice of ¢
» BUT at lower values of ¢ the statistical uncertainty is larger
» In principle if every function is allowed it is infinite

» ON THE OTHER HAND at large values of ¢ the bias gets larger

j2} E
g F
81600; + fit power law
?1-1400; + approx. p-value
5 F
. >1200—
» So the user has a choice gt —+ pvaiue
. . S1000[
bias or variance? 5 % - Akaike
S t
. R . £ 800~
» Question for the statisicians: which ERNs
600—
correction should we use? F
400F
200~
8.4 0.45 5 0.55 0.6 0.65 .7



Other questions

>

vy VvV VY

v

Studies with mixed functions
> With two functions e.g. e % and z~ P does it make sense to try fe P17 4 (1— f)z~P2?
» Then 3 free parameters not 1. Does the correction handle this appropriately?

Is there an analytical proof of which correction to use?

How should one assess how many “model” choices is appropriate?

Are there other ways of sampling more of the “model phase space’ cheaply?

Can one “interpolate’ gaps in the discontinuous profiles?
Are there fairer ways of generating MC from mixed model hypotheses?

» How does one generate an “AsimoV’ toy from a composite model?
How can we use the method to set Bayesian credible intervals rather than frequentist
confidence intervals?

» What prior should be used?
How do you decide how many orders to include in the envelope if the choice is
infinitely many?

> Fisher test?
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