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Basic setup
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� Detecting a signal (interest) against an unknown background (nuisance).

� Simple model: vector y = (y1, . . . , yn) of independent Poisson variables with mean vector

µ+ ψz,

where µ represents the background, z is a known vector and interest parameter is ψ.

� Is ψ > 0?
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Classical likelihood theory
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� Parametric probability model f(y;ψ, λ) depends on interest parameter ψ (usually scalar) and
nuisance parameter λ

� Both parameters vary continuously in subsets of Rd

� Test ψ = ψ0 using likelihood ratio statistic

Wp(ψ0) = 2{log f(y; ψ̂, λ̂)− log f(y;ψ0, λ̂psi0)}

where (ψ̂, λ̂) is overall MLE and (ψ0, λ̂ψ0
) is MLE when ψ = ψ0.

� Under classical regularity conditions (especially that the model is correct!) and scalar ψ,

W (ψ0)
·

∼ χ2
1,

when ψ0 is the true value of ψ, leading to profile likelihood (1− α) confidence set

{
ψ : −2 log f(y;ψ, λ̂ψ) ≤ −2 log f(y; ψ̂, λ̂) + c1(1− α)

}
.

� If the model is somewhat mis-specified, this interval remains approximately valid, provided the
mis-specification is ‘orthogonal to ψ’ (Battey and Reid, 2024, PNAS) — difficult to guarantee.



Discrete profiling
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� Density functions fm(y;ψ, λm) for M models with respective nuisance parameters λm.

� The discrete profile likelihood ratio statistic is

Wd(ψ0) = 2

{
max

ψ,λm,m
log fm(y;ψ, λm)− max

λm,m
fm(y;ψ0, λm)

}
,

and the Taylor expansions leading to the limiting χ2 distribution do not hold.

� Clearly Wd(ψ0) is stochastically smaller than W (ψ0), i.e.,

P {Wd(ψ0) ≤ w} ≥ P {W (ψ0) ≤ w} , w > 0,

but does this matter?

� Can we use χ2 asymptotics anyway?

� Should we adjust for the different dimensions of λm?



Choice of model
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� Parametrically: µ = Xλ or µ = exp(Xλ) or . . . for some n× p matrix X (polynomials,
inverse polynomials, . . . ).

– How to choose the link function?

– How to choose X? Fit improves as p increases, perhaps uselessly (bias-variance tradeoff).

� Semi-parametrically: use a generalized additive model (GAM) (Wood, 2017).

– X is a matrix of splines and λ is penalised;

– degree of penalisation is determined from data by maximising a marginal likelihood;

– highly efficient code available (R package mgcv);

– but flexibility could be a curse?

� Next slide shows GAM fits of Poisson model using identity link function (top) and log link
function (bottom), for

– Xλ for entire dataset,

– reduced background fits of Xλ to data outside blue ticks,

– full model fits of Xλ+ zψ to all data.

� Log link function fit gets a preliminary estimate µ̃ of µ, then writes

µ+ zψ = µ(1 + zψ/µ) ≈ µ exp(z′ψ) = exp(Xλ+ z′ψ), z′ = z/µ̃.



Some GAM fits
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GAM deviances
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No signal added Signal added
Link Model Residual Residual Spline ψ Residual Residual Spline ψ

deviance edf edf deviance edf edf

Identity b 204.97 155.7 3.3 193.30 150.5 8.5
rb 172.82 131.9 3.1 173.31 131.9 3.1
b+s 202.70 155.0 3.0 9.736.88 204.24 155.1 2.9 20.877.13

Log b 207.28 158.0 1.0 193.91 151.4 7.6
rb 175.64 133.7 1.3 176.16 133.7 1.3
b+s 205.01 157.0 1.0 8.495.58 206.83 157.0 1.0 18.125.34

Results of Poisson GAM fits to data with and without added signal.

� The models use identity or log link functions, and terms for background (b), reduced background (rb)
or background and signal (b+s).

� Standard errors for estimates of the signal size ψ are shown as subscripts.

� The deviance for a model is equivalent to

−2max ℓ,

and the residual deviance should be approximately χ2

residual df
for a well-fitting model.



GAM summary
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� Interesting alternative for fitting background

� Isotonic splines could allow for monotone background (have not attempted this)

� Flexibility is

– a blessing (no need to choose X or p);

– a curse (presence of a signal pollutes background fit)

� Inference has to be based on estimate of ψ (not likelihood ratio), since deviance can increase
when signal added — negative likelihood ratio statistic!

� Even with a GAM there is bias with the wrong link function:
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Theoretical discussion
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� Explicit calculations possible for simple Gaussian model

y ∼ Nn(µ+ zψ0, σ
2In) but we fit linear model y ∼ Nn(Xλ+ zψ, σ2In).

� Define standard projection matrices in linear regression,

– P = In −X(XTX)−1XT (projects Rn onto the space orthogonal to the columns of X),

– Q = In − z(zTPz)−1zTP (ditto for (X, z)).

� In this case the deviance for a given ψ is proportional to Sp(ψ) = (y − zψ)TP (y − zψ),

ψ̂ = (zTPz)−1zTPy ∼ N (ψ0 + zTPµ/zTPz, σ2/zTPz),

and the terms of

E {Sp(ψ)} = σ2

{
µTPQµ/σ2 + (n− p) +

(ψ − ψ0 − zTPµ/zTPz)2

σ2/zTPz

}

can be interpreted as

– upward bias when µ cannot be explained by (X, z),

– noise degrees of freedom, decreased by estimation of λ,

– profile for ψ minimised at ψ0 + zTPµ/zTPz, so biased if Pµ 6= 0.



Illustration for noiseless Poisson model
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and cubic polynomials.



Illustration for Poisson model
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Model selection
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� Useful to distinguish

– True model: unknown

– Correct models: contain the true model, but have useless extra parameters

– Wrong models: do not contain the true model

� To paraphrase George Orwell:

All models are wrong, but some are wronger than others:

– the linear fit is badly wrong

– the quadratic fit shows visible bias but variance only slightly larger than the ideal fit

– the cubic fit shows negligible bias but clearly increased variance

� Looks like

– we should add p to the deviance to counteract the estimation effect, not 2p (as with AIC)

– but this will not account for the added variance.

� Simulations with these models and profile LR statistics seem ambiguous . . .



Illustration for Poisson model
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� Comparison of 10000 simulated discrete profile LR statistics: original scale (left), with p
added (centre), with 2p added (right), with χ2

1 quantiles.

� Adding 2p gets closest to the ‘nominal’ χ2
1.

� The true model is among those fitted.
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Illustration for Poisson model
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� Comparison of 10000 simulated discrete profile LR statistics: original scale (left), with p
added (centre), with 2p added (right), with χ2

1 quantiles.

� Adding nothing or p seems best — visible distortion on the right?

� The true model is not among those fitted.
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Power
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� ROC curves for discrete profile likelihood ratios: original, with p added, with 2p added.

� Top: true model included; bottom: true model not included.

� Right: zoom of left.
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Conclusions?
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� Discrete profiling

– seems like a useful approach to inference on an interest parameter ψ,

– but ψ needs to be the same for all models (possibility of bias)

– very wrong models are (almost) irrelevant

– power is lost when using classical χ2 asymptotics?

– looks as though adding 2p for estimation gives highest power (but it’s a
close thing)

� Fitting (isotonic) GAMs might be a way forward — but how good is classical
asymptotic theory in this case?
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