

Development of internal Sn Nb₃Sn wires with internal oxidation

Gianmarco BOVONE, Florin BUTA, Francesco LONARDO,

Marco BONURA, and Carmine SENATORE

Department of Quantum Matter Physics, University of Geneva, Switzerland Department of Nuclear and Particle Physics, University of Geneva, Switzerland

David LEBOEUF and Xavier CHAUD CNRS - LNCMI Grenoble, France

Camelia N. BORCA and Thomas HUTHWELKER

PSI, Phoenix Beamline, Switzerland

Simon C. HOPKINS and Thierry BOUTBOUL CERN, Switzerland Swiss National Science Foundation

Outline of the presentation

- State of the art on the internal oxidation process
- Nb₃Sn wires are not created equal
 - Differences between PIT and RRP wires
 - Is there a better wire technology for accelerator magnets?
- Wires manufacturing at UNIGE
 - Monofilamentary wires
 - Simplified subelements
 - Multifilamentary wires with and without internal oxidation
- Conclusions

The importance of oxidation for Nb₃Sn

State of the art of internally oxidized wires

Manufacturing process: RRP vs PIT

Section of a Nb₃Sn dipole magnet

Cabling degradation is much less pronounced in Internal Sn RRP wires compared to PIT wires

Distorted filaments produce Sn leak and thus are only partly reacted, leading to the lower I_c

- S. Hopkins et al., IEEE Trans. Appl. Supercond., <u>34</u> (2024) 6001308 **DOI:** <u>10.1109/TASC.2024.3375274</u>
- M. Brown et al., Supercond. Sci. Technol., <u>29</u> (2016) 084008 **DOI:** <u>10.1088/0953-2048/29/8/084008</u>

Cumulative frequency

C. Segal et al., Supercond. Sci. Technol., <u>29</u> (2016)
 085003 DOI: <u>10.1088/0953-2048/29/8/085003</u>

How it's made: high-J_c internal Sn Nb₃Sn wire

Critical current density $\propto I/(grain size)$

How it's made: high-J_c internal Sn Nb₃Sn wire

The goals of our project at

- Develop a process to introduce oxide powder in an internal Sn rod-type wire to refine Nb₃Sn grains
- Produce long prototype Nb₃Sn wires (unit lengths <u>> 20 m</u>), matching the FCC targets for critical current density
 - Optimize the process for scaling up to an industrial production

The three steps to get there:

I. Monofilamentary wires: Material study Test of various alloys and oxides (and their combinations)

- 2. Simplified subelements: Current transport Deformation process, filaments arrangement and oxygen source configurations
- 3. Development of multifilamentary internal Sn rod-type wires with internal oxidation!

Monofilamentary wires

Wire configuration

Nb-1wt%Zr + SnO₂

Nb-7.5wt%Ta-1wt%Zr + SnO₂

Nb-7.5wt%Ta-2wt%Zr + SnO₂

 CrossMark
 Very high upper critical fields and enhanced critical current densities in Nb₃Sn superconductors based on Nb–Ta–Zr alloys

 RECEIVED 20 December 2020
 and internal oxidation

 REVISED 3 Pebruary 2021
 F Buta¹[®], M Bonura¹[®], D Matera¹[®], G Bovone¹[®], A Ballarino²[®], S C Hopkins²[®], B Bordini²[®], X Chaud²[®] and C Senatore¹[®]

 15 February 2021
 ¹ University of Geneva, DQMP, Geneva, Switzerland

² European Organization for Nuclear Research CERN, Geneva, Switzerland

³ French National High Magnetic Field Laboratory, Grenoble, France

DOI: 10.1088/2515-7639/abe662

PAPER

9 March 2021

Simplified multifilamentary wires layout and

configuration on the superconducting

fabrication process

copper jacket

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

9

Effects of the internal oxidation on the superconducting properties

The FCC target for layer J_c is calculated based on the area fraction of reacted Nb₃Sn in **RRP** wire for Hllumi

5000

Nb alloy	4.2 K, 99 % R no-OS	4.2 K, 99 % R Core-OS	4.2 K, 99 % R Annular-OS
Nb 7.5% ^{wt} Ta I% ^{wt} Zr	28.0 ± 0.6	28.97 ± 0.4	29.2 ± 0.4
Nb 7.5% ^{wt} Ta I% ^{wt} Hf	28.9 ± 0.6	29.0 ± 0.4	29.3 ± 0.4
Nb 7.5% ^{wt} Ta	28.0 ± 0.8	N/A	

Precipitates and pinning contribution

1.0

0.8

0.6

0.4

0.2 -

0.0 -

0.0

F_p / F_p(max)

<u>Change of dominant pinning mechanism</u> induced by the presence of <u>oxide precipitates</u>, Artificial Pinning Centers (APC), Shift with NbTaHf-alloy is larger

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

12

 $F_p = J_c \times B$

XANES investigation on precipitates

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 3, MAY 2024

60002

X-Ray Absorption Spectroscopy to Investigate Precipitated Oxides in Nb₃Sn Wires With an Internal Oxygen Source

G. Bovone^(a), F. Buta^(a), F. Lonardo^(a), M. Bonura^(b), C. N. Borca^(b), T. Huthwelker^(a), S. C. Hopkins^(a), A. Ballarino^(a), T. Boutboul^(b), and C. Senatore^(a), *Senior Member, IEEE*

DOI: 10.1109/TASC.2024.3354232

Atomic specific technique, sensitive to the <u>chemistry</u> and to <u>crystal environment</u>

Phoenix Beamline Investigation of <u>Zr</u> <u>spectrum</u> in <u>different</u> <u>region</u> of the <u>reacted</u> (and unreacted) wires

PS

What did we learn from XANES?

ZrO₂ precipitates due to the lower solubility of Zr and O in Nb₃Sn compared to Nb

X-Ray Absorption Spectroscopy to Investigate Precipitated Oxides in Nb₃Sn Wires With an Internal Oxygen Source

G. Bovone^(a), F. Buta^(a), F. Lonardo^(a), M. Bonura^(a), C. N. Borca^(a), T. Huthwelker^(a), S. C. Hopkins^(a), A. Ballarino^(a), T. Boutboul^(a), and C. Senatore^(a), *Senior Member, IEEE*

DOI: 10.1109/TASC.2024.3354232

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

ZrO₂-like spectrum found only in Nb₃Sn! Different Zr spectrum in residual alloy, despite oxygen diffusion

14

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS UNIVERSITÉ 15 DE GENÈVE 15

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Introduction of OS reduces the Nb₃Sn reaction kinetics

Higher temperature can promote reaction, but we want small grain size!

Significant increase of layer thickness at 700 °C

With OS 700 °C × 50 h

700 °C × 100 h

Heat treatment optimization: Influence of the Heat Treatment on the Layer $J_{\rm C}$ of Internal-Sn Nb₃Sn Wires With Internally **Oxidized Nanoparticles** F. Lonardo[®], G. Bovone[®], F. Buta, M. Bonura[®], T. Bagni[®], B. Medina-Clavijo[®], A. Ballarino[®], S. C. Hopkins[®], T. Boutboul[®], and C. Senatore[®], *Senior Member, IEEE*

radius of nanoparticles (nm)

Getting back the knowledge from industry

Fabrication of RRP wires was mainly carried by industry. Few academic study on the production, we need to gather the knowledge and close the gap

54/61

7/7 with

barrier

30/37

wires without OS, with

subelement containing

~ 200 filaments

Restacked wires manufactured with different layout, obtained in a max length of approx. 3 m

18

Approaches to implement internal oxidation

Where should we place the OS in a RRP wire?

OS at subelement level

Nb alloy filaments substituted with OS

OS inside each filament of the subelement

OS at filament level

Does these approaches work?

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

Wire fabricated with 7 subelements, made of 42 cold deformed NbTaHf alloy filaments.

Exploring how to implement the technique in extruded filaments and subelements.

Nb₃Sn grains refined down to <u>**60 nm**</u>!!

Internal oxidation successfully implemented in a (short) Nb₃Sn rod-type multifilamentary wire

20

Summary and future perspectives

- Internal oxidation process proved by multiple sources to be an effective way to reach the FCC target for non-Cu J_c
- Material studies on internally oxidised monofilamentary wires showed grain refinement and enhanced J_c and B_{c2}
- Presence of APCs in prototype rod-type subelement enhance layer J_c above the FCC specifications in addition to record-<u>high B_{c2}</u> and change of pinning mechanism (point defect)
- X-Rays Absorption Near Edge Structure (XANES) on Nb₃Sn wires shows the formation of the APC precipitates is concomitant to the formation of the Nb₃Sn layer
- **Preliminary steps** moved in the fabrication of **extruded subelements and restacked wires**
 - **Restacked wires** fabricated from **extruded subelement** with **NbTa alloy, without OS**
 - Grain refinement (60 nm) in a wire from cold-deformed subelements with NbTaHf and OS

Thank you for

your attention

...and make Nb₃Sn great again!