Vertex Detector at CLIC

CDR Review October 18th-20th 2011 Manchester

Dominik Dannheim (CERN)

Outline

- •Requirements
- Simulation layouts
- •Performance optimisation
- Integration, assembly and cooling
- •Sensor- and readout-technology R&D

Occupancies and radiation exposure: → André Sailer's presentation on backgrounds

Requirements

- Integral part of tracking systems (in particular for low p_T)
- Efficient tagging of heavy quarks + tau leptons through precise determination of displaced vertices:

$$\sigma(d_0) = \sqrt{a^2 + b^2 \cdot \operatorname{GeV}^2/(p^2 \sin^3 \theta)}$$

 $a \approx 5 \mu m$ $b \approx 15 \mu m$

- → Good single point resolution: σ_{SP} ~3 µm
- → Low material budget: $X \leq 0.2\% X_0$ / layer (incl. cooling)
- Full coverage down to low polar angles $\theta_{min} \sim 7^{\circ}$
- Few % occupancy despite large background rates
- Time stamping with 5-10 ns accuracy, to reject background
- To date: no technology option available fulfilling all requirements
- \rightarrow Simulation studies: impact of layout on performance
- → Integration/Assembly + cooling
- \rightarrow Discuss ongoing and future R&D on sensors & readout

19. Oct. 2011

Simulation layout CLIC_ILD

19. Oct. 2011

Simulation layout CLIC_SiD

Material budget vertex region

- Integrated amount of material seen by particles originating from the IP: X/X₀ ~ 1% (at θ=90°, averaged over φ)
- Good agreement full / fast simulation (fast simulation has only ideal cylinders and disks, no module overlaps)

Transverse impact-parameter resolution

d₀: distance of closest approach to interaction point in R-phi plane → main benchmark parameter for vertex detector performance Fast simulation: LiC detector toy tool, used for design optimisation Full simulation: Geant4-based ILD/SiD frameworks, used for physics studies

CLIC_ILD:

- Both full and fast simulation perform simple Gaussian hit smearing
- Full simulation without TPC information
 - \rightarrow Worse resolution for high momenta

CLIC_SiD:

 Full simulation models clustering according to parametrisation of KPiX readout chip → added realism leads to worse resolution in full simulation, as expected

Dependence on single-point resolution

- Varied single-point resolution by +- 50% (~ pixel sizes 10x10, 20x20, 30x30 μm²)
- Observed change in d₀-resolution:
 - +- 40% for p = 100 GeV
 - +- 15% for p = 1 GeV
- Resolution close to or better than target values for all cases
- Pixel size is also constrained by:
 - Expected background occupancy
 - Ability to separate adjacent tracks in dense jets

^{19.} Oct. 2011

Dependence on distance to IP

- Varied distance to interaction point, by changing radii of beam pipe and barrel vertex layers in CLIC_ILD model
- Observed change in d₀-resolution:
 - 3.2% / mm for high momenta (parameter 'a')
 - 0.8% / mm for low momenta (parameter 'b')
- Distance to interaction point is constrained by direct hits from incoherent pairs (see André Sailer's presentation on backgrounds)

Dependence on material

- Very small amount of material in baseline designs
- Realistic models for supports, cabling, cooling not available yet
- Studied sensitivity of d₀ resolution for low momenta on material in beampipe and silicon pixel layers of CLIC_ILD
- Doubling beam-pipe thickness \rightarrow ~20% worse resolution at 90°
- Doubling material in silicon layers $\rightarrow \sim 20\%$ worse resolution at 90°
- Steeper slope in forward region

19. Oct. 2011

Beam pipe

Requirements for beam pipe:

- Provide good vacuum \rightarrow leak tightness
- Minimise multiple scattering \rightarrow small amount of material in central part
- Allow for placement of Si layers close to IP \rightarrow small radius
- Stay outside region of high background occupancy \rightarrow lower limit on radius
- Shield against back scatters from forward region \rightarrow thick conical part outside VTX acceptance

Implementation in simulations:

- Central Beryllium part:
 - CLIC_ILD: d=0.6 mm, R=29.4 mm (B=4 T)
 - CLIC_SiD: d=0.5 mm, R=24.5 mm (B=5 T)
 - Safe w.r.t. backgrounds, vacuum collapse, leak tightness (D0, CDF experience in run II)
 - Unlike ILC: no extra shielding, due to low expected levels of incoh. synchrotron radiation (t.b.c.)
- Forward conical part:
 - 4 mm iron, to shield against back scatters from forward region
 - Pointing to interaction point \rightarrow no extra material inside tracking acceptance

Assembly and Integration (CLIC_SiD)

Fig. 4.11

- Assembly in two halves
 → separation from beam pipe assembly
- Double-walled carbon fibre outer support cylinder + support disks
 - supported by conical part of beam pipe
 - Keep central part of beam pipe straight
- Longitudinal passages for cooling gas
- Sensor assembly to be defined:
 - glued to each other or glued to CF support
- CF end rings to control roundness
- Spoked CF membranes to connect layers

19. Oct. 2011

Cooling

도 ³¹⁰

T_{ave}(Si) 502

300

295

290

0

- P~500 W in vertex detectors (50 mW/cm²)
- Need efficient cooling, meeting material budget requirements

Forced (dry) air flow

- baseline for barrel region
- no extra material
- CLIC_SiD calculation: T_{in}=16°C, T_{ladders}~25°C → up to 240 liter/s flow, ~40 km/h flow velocity
- Innermost layer critical
- Possible improvements: lower T_{in} and/or allow for higher T_{ladders}

Evaporative CO₂ cooling

- Option for supplementary cooling in forward disks
- High pressure up to ~70 bar, requires rather thick tubing
- $\sim \sim 2.7 \% X_0$ per tube (incl. coolant)

Water cooling

- Option for supplementary cooling in forward disks
- Sub-atmospheric pressure
- Can use thin PEEK pipes \rightarrow lower material budget than CO₂, ~0.4% X₀ per tube

Micro-channel cooling

- Ongoing R&D (e.g. NA62 Gigatracker upgrade)
- Integrate cooling channels in Silicon
- Connectors pose major challenge

19. Oct. 2011

Vertex Detector at CLIC

13

400

Fig. 4.12

200

300

Total Flow [g/s]

Incoming air = 289 K

100

Pixel-detector technology options

- 20x20 μ m² pixel sizes \rightarrow need small feature sizes
- Time-stamping ~5-10 ns → need high-resistivity sensor
- ~0.2% material/layer \rightarrow corresponds to ~200 µm silicon (incl. support + cables)
- 156 ns bunch train every 20 ms \rightarrow trigger-less readout, power pulsing
- Radiation exposure <10¹¹ $n_{eq}/cm^2/yr \rightarrow radiation hardness not a major concern$

Possible technology development paths:

1) Hybrid or multi-tier technologies

- Thinned high-resistivity fully depleted sensors
- Fast, low-power highly integrated readout chip
- Low mass interconnects
- Pros: factorisation of sensor + readout R&D; r/o chips profit fully from advancing industry standards
- Cons: interconnect difficult/expensive; harder to reduce material

2) Integrated technologies

- Sensor and readout combined in one chip or 3D integration of multiple tiers
- Charge collection in epitaxial layer (typically < 1 μ m)
- Pros: allows for very low material solutions; synergy with R&D for ILC detectors
- Cons: harder to achieve good time resolution and sufficient S/N

Examples for Hybrid Approach

- Thinned high-resistivity fully depleted sensors
 - ALICE pixel upgrade: 50 µm silicon sensors (IZM)
 - Handling is a concern, in particular for larger structures
- Fast, low-power readout ASICs in Very-Deep-Sub-Micron (VDSM) technology
 - Timepix3: 55 μm², 130 nm
 → CLICPix (prototypes ~2014): 20 μm², 65 nm
 - ALICE1LHCb r/o chip: 50x425 μm², 250 nm
 → upgrade (prototypes ~2012-13): 30x30 μm², 130-180 nm
- Low-mass interconnects and pixel connectivity
 - Through Silicon Vias (TSV):
 - fan out ASIC contacts to backside through vertical conducting channel
 - avoids dead areas from wire-bonding pads around the chips
 - Implem. example: CEA-Leti (Medipix3, prototypes 2011-12)
 - 3D interconnects
 - Interconnection of separately optimised tiers in different technologies
 - Lateral interconnectivity
 - Edgeless sensors
 - Stitching of CMOS arrays

Examples for Integrated Approach

- Active R&D programs for integrated technologies, targeted to ILC requirements
- Attempts to reach faster signal collection and ~ns time-stamping capability, compatible with CLIC requirements:
 - MIMOSA CMOS chip family (currently 350 nm) in STAR, EUDET Telescope
 → developing high-resistivity epitaxial layers, smaller feature sizes
 - Chronopixel CMOS sensors with fully depleted epitaxial layer
 - INMAPS technology: deep p-well barrier protects n-well charge collector, improves charge collection, allows for high-resistivity epitaxial layer and full-featured CMOS MAPS technology
 - High-voltage CMOS: CMOS signal processing electronics embedded in reverse-biased deep n-well that acts as signal collecting electrode
 - Silicon-On-Insulator (SOI): ~200 nm SiO₂ isolation layer separates charge collection and readout functionality
 - Full 3D-integrated pixel solutions: Thinned high-resistivity sensitive tier coupled to additional tiers with advanced analog+digital functionality
- Concerns for CLIC:
 - Long-term availability of processes
 - Suitability for large-scale systems
 - \rightarrow prefer staged developments and synergy with industrial trends

Future Work

- Simulation, Layout + Integration:
 - Improve realism of simulation for digitization / reconstruction (signal development, clustering, charge sharing, resolution, angular dependence, single-event effects, etc.)
 - Improve models for cabling / supports / cooling
 - Develop low-mass support structures
 - Work out assembly, integration and access scenarios
 - Strengthen link to physics requirements: heavy flavour tagging, benchmark studies involving forward physics
 - Re-optimise geometry in view of all of the above
- Sensor + Readout R&D:
 - Develop pixel detector with small pitch (~20 μm) and fast time stamping of hits (~5 ns)
 - \rightarrow Hybrid or multi-tier
 - \rightarrow Integrated CMOS technologies
 - Low-mass interconnects for vertical and lateral integration
 - Thinning of wavers to ~50 μm
 - Power delivery and power reduction techniques (P≲50 mW / cm²)
 → Power-pulsing + air cooling in magnetic field

Summary / Conclusions

- CLIC environment + physics requirements pose challenging demands on vertex-detector systems
- Presented initial layout proposals meeting those demands
- Studied dependence of performance on layout parameters
- Integration, Assembly and Cooling considerations
- Examples for active R&D on sensor + readout technologies, aiming to meet the CLIC requirements