

Tracking Overview

Compact All-silicon system

- Precise hit resolution
- Fast charge-collection
- time-stamping
- Integrated approach
 - Vertex detector and Tracker viewed as **one** system
 - Combined Seeding and Tracking
- CLIC_SiD and SiD main tracker are identical

Tracker at a glance

- Strip sensors
 - 25 µm strip pitch
 - 50 µm readout pitch
 - 300 µm sensitive thickness
- Modules
 - 97.8 x 97.8 mm (barrel)
 - Trapezoids (endcap)
 - 2 KPIX chips with 1024 channels each
- Mechanics

 Mounted on carbon-fiber structure

Barrel	Inner radius	230 mm
	Outer radius	1239 mm
	Max Z	578 -1536 mm
	Hits	5 (rφ)
Endcap	Inner radius	207 -1162 mm
	Outer radius	1252 mm
	Max Z	1556 mm
	Hits	4 (SAS)

Marcel Stanitzki

Tracker layout

Marcel Stanitzki

Tracker Modules

- Design using 3 components (no hybrid):
- Silicon Sensor
 - Routing of signals through 2nd metal layer
 - Power and clock signals also routed over the sensor
- KPiX readout
 - Two KPiX chips bump-bonded to the sensor
- Flexible readout cable
 - 2-layer 50 µm Kapton

Tracker Cabling

- connect tracker modules to the concentrator boards mounted at the ends of each barrel.
- Cable has 2 components:
 - Pigtail, a short cable glued to the module
 - Extension, a long cable connecting the Pigtail to the concentrator

Coverage and Material

Tracking strategies

- Tracking studies use
 - Planar sensor geometry
 - Realistic charge deposition and digitization/clustering
- Time-stamping of 20 BX
 - Background reduction
- Strategy builder to optimize tracking performance
 - At least 7 hits required

SeedTracker algorithm

- SeedTracker algorithm in org.lcsim
- Finding track seeds in seed layers
 - looking for combinations of at least three hits that fulfill a helix fit
- Track seeds extension
 - successively adding more hits
- Vertex constraint to reduce number of possible combinations
 - ± 5 mm in r\u03c6, ± 10 mm in z (loose enough to find tracks from displaced vertices)
- Select final tracks according to strategy

- Good efficiency down to 8 degrees (7 hit cut-off)

- Low momentum performance
 - Affected by material budget at low angles

11

Di-jet performance

Using a Z' to uds decays

- Jets with high energy, very collimated
- Tracking efficiency remains high
 - Robust against $\gamma\gamma \rightarrow$ hadrons background

A few more details

- Tracks ($p_T < 1 \text{ GeV/c}$)
 - Loop in the barrel
 - Not enough hits to form a track
- High momentum Tracks
 - Center of the jets
 - Merging Hits leads to efficiency drop
- Adding background
 - Does sometimes "improve" performance
 - With 1 fake hit track passes quality cut

Fake rate is well under control

- 95 % of tracks have no fake hit attached
- Robust against background
- Forward region has lower rate due to smaller segmentation

Performance & outlook

- Tracking performance reaches CLIC goal
 - < 2 x 10⁻⁵ down to 30°
- Robust against backgrounds
- Still room for improvements
 - Better track fitter
 - Improved strategies
 - Loop recovery

Non-prompt tracks

- Calorimetry Aided Tracking
 - Uses finely-segmented
 ECAL for track stubs
 - proof-of-principle code exists
 - Hasn't been used for the CDR
- Will be further explored
 - In the post-CDR phase

- This hasn't been really explored yet
- But there are other tracking doing dE/dx in silicon
 - CDF
 - ATLAS
 - CMS
- No reason not to implement this later on

- CLIC_SiD tracking
 - Robust tracking in the CLIC environment
 - Achieves performance goal
- Background robustness demonstrated
- Hardware developments on their way
- Room for improvements
 - Track finding and fitting
 - Non-prompt tracks
 - dE/dX

